Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis

  1. Sandra Kümper  Is a corresponding author
  2. Faraz K Mardakheh
  3. Afshan McCarthy
  4. Maggie Yeo
  5. Gordon W Stamp
  6. Angela Paul
  7. Jonathan Worboys
  8. Amine Sadok
  9. Claus Jørgensen
  10. Sabrina Guichard
  11. Christopher J Marshall
  1. Institute of Cancer Research, United Kingdom
  2. Cancer Research UK London Research Institute, United Kingdom
  3. Cancer Research UK Manchester Institute, United Kingdom

Abstract

Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility.

Article and author information

Author details

  1. Sandra Kümper

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    For correspondence
    sandra.kuemper@icr.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Faraz K Mardakheh

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Afshan McCarthy

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Maggie Yeo

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Gordon W Stamp

    Experimental Pathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Angela Paul

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jonathan Worboys

    Cancer Research UK Manchester Institute, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Amine Sadok

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Claus Jørgensen

    Cancer Research UK Manchester Institute, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Sabrina Guichard

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher J Marshall

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Roger Davis, Howard Hughes Medical Institute & University of Massachusetts Medical School, United States

Ethics

Animal experimentation: All animal procedures were approved by the Animal Ethics Committee of the Institute of Cancer Research in accordance with National Home Office regulations under the Animals (Scientific Procedures) Act 1986. The date of approval of the current project license under which this work was carried out was the 07/09/13.

Version history

  1. Received: October 9, 2015
  2. Accepted: January 13, 2016
  3. Accepted Manuscript published: January 14, 2016 (version 1)
  4. Version of Record published: March 7, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 7,775
    views
  • 1,687
    downloads
  • 117
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandra Kümper
  2. Faraz K Mardakheh
  3. Afshan McCarthy
  4. Maggie Yeo
  5. Gordon W Stamp
  6. Angela Paul
  7. Jonathan Worboys
  8. Amine Sadok
  9. Claus Jørgensen
  10. Sabrina Guichard
  11. Christopher J Marshall
(2016)
Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis
eLife 5:e12203.
https://doi.org/10.7554/eLife.12203

Share this article

https://doi.org/10.7554/eLife.12203

Further reading

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.