Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system

  1. Abhishek Kulkarni
  2. Deniz Ertekin
  3. Chi-Hon Lee
  4. Thomas Hummel  Is a corresponding author
  1. University of Vienna, Austria
  2. Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States

Abstract

The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.

Article and author information

Author details

  1. Abhishek Kulkarni

    Department of Neurobiology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Deniz Ertekin

    Department of Neurobiology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Chi-Hon Lee

    Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Hummel

    Department of Neurobiology, University of Vienna, Vienna, Austria
    For correspondence
    thomas.hummel@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Alexander Borst, Max Planck Institute of Neurobiology, Germany

Version history

  1. Received: December 10, 2015
  2. Accepted: March 16, 2016
  3. Accepted Manuscript published: March 17, 2016 (version 1)
  4. Version of Record published: April 21, 2016 (version 2)

Copyright

© 2016, Kulkarni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,138
    views
  • 512
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Abhishek Kulkarni
  2. Deniz Ertekin
  3. Chi-Hon Lee
  4. Thomas Hummel
(2016)
Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system
eLife 5:e13715.
https://doi.org/10.7554/eLife.13715

Share this article

https://doi.org/10.7554/eLife.13715

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.