ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the androgen receptor

  1. Zineb Mounir
  2. Joshua M Korn
  3. Thomas Westerling
  4. Fallon Lin
  5. Christina A Kirby
  6. Markus Schirle
  7. Gregg McAllister
  8. Greg Hoffman
  9. Nadire Ramadan
  10. Anke Hartung
  11. Yan Feng
  12. David Randal Kipp
  13. Christopher Quinn
  14. Michelle Fodor
  15. Jason Baird
  16. Marie Schoumacher
  17. Ronald Meyer
  18. James Deeds
  19. Gilles Buchwalter
  20. Travis Stams
  21. Nicholas Keen
  22. William R Sellers
  23. Myles Brown
  24. Raymond A Pagliarini  Is a corresponding author
  1. Genentech, United States
  2. Novartis Institutes for BioMedical Research, United States
  3. Harvard Medical School, United States
  4. Novartis Institutes for Biomedical Research, United States
  5. Organovo, United States
  6. NIBR, United States
  7. Laboratoires Servier, France
  8. Celgene Avilomics Research, United States

Abstract

The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR's ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation.

Article and author information

Author details

  1. Zineb Mounir

    Genentech, South San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joshua M Korn

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Westerling

    Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fallon Lin

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christina A Kirby

    Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Markus Schirle

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gregg McAllister

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Greg Hoffman

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nadire Ramadan

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anke Hartung

    Organovo, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yan Feng

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. David Randal Kipp

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Christopher Quinn

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Michelle Fodor

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jason Baird

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Marie Schoumacher

    Laboratoires Servier, Neuilly-sur-Seine, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Ronald Meyer

    Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. James Deeds

    Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Gilles Buchwalter

    Celgene Avilomics Research, Bedford, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Travis Stams

    Center for Proteomic Chemistry, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Nicholas Keen

    Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. William R Sellers

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Myles Brown

    Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Raymond A Pagliarini

    Celgene Avilomics Research, Bedford, United States
    For correspondence
    raymond.pagliarini@novartis.com
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Scott A Armstrong, Memorial Sloan Kettering Cancer Center, United States

Version history

  1. Received: December 21, 2015
  2. Accepted: May 6, 2016
  3. Accepted Manuscript published: May 16, 2016 (version 1)
  4. Accepted Manuscript updated: May 18, 2016 (version 2)
  5. Version of Record published: June 15, 2016 (version 3)

Copyright

© 2016, Mounir et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,973
    views
  • 1,036
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zineb Mounir
  2. Joshua M Korn
  3. Thomas Westerling
  4. Fallon Lin
  5. Christina A Kirby
  6. Markus Schirle
  7. Gregg McAllister
  8. Greg Hoffman
  9. Nadire Ramadan
  10. Anke Hartung
  11. Yan Feng
  12. David Randal Kipp
  13. Christopher Quinn
  14. Michelle Fodor
  15. Jason Baird
  16. Marie Schoumacher
  17. Ronald Meyer
  18. James Deeds
  19. Gilles Buchwalter
  20. Travis Stams
  21. Nicholas Keen
  22. William R Sellers
  23. Myles Brown
  24. Raymond A Pagliarini
(2016)
ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the androgen receptor
eLife 5:e13964.
https://doi.org/10.7554/eLife.13964

Share this article

https://doi.org/10.7554/eLife.13964

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.

    1. Cancer Biology
    2. Epidemiology and Global Health
    Lijun Bian, Zhimin Ma ... Guangfu Jin
    Research Article

    Background:

    Age is the most important risk factor for cancer, but aging rates are heterogeneous across individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk prediction of site-specific and overall cancer.

    Methods:

    Using Cox regression models, we examined the association of Phenotypic Age Acceleration (PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants from the UK Biobank. We generated PhenoAge using chronological age and nine biomarkers, PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and an incidence-weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-specific polygenic risk scores (PRSs).

    Results:

    Compared with biologically younger participants, those older had a significantly higher risk of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18–1.27) in men, and 1.26 (1.22–1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was observed on overall cancer risk, with HRs of 2.29 (2.10–2.51) for men and 1.94 (1.78–2.11) for women with high genetic risk and older PhenoAge compared with those with low genetic risk and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of healthy lifestyle factors (Beta = –1.01 in men, p<0.001; Beta = –0.98 in women, p<0.001).

    Conclusions:

    Within and across genetic risk groups, older PhenoAge was consistently related to an increased risk of incident cancer with adjustment for chronological age and the aging process could be retarded by adherence to a healthy lifestyle.

    Funding:

    This work was supported by the National Natural Science Foundation of China (82230110, 82125033, 82388102 to GJ; 82273714 to MZ); and the Excellent Youth Foundation of Jiangsu Province (BK20220100 to MZ).