Structure of Fam20A reveals a pseudokinase featuring unique disulfide pattern and inverted ATP-binding

  1. Jixin Cui
  2. Qinyu Zhu
  3. Hui Zhang
  4. Michael A Cianfrocco
  5. Andres E Leschziner
  6. Jack E Dixon  Is a corresponding author
  7. Junyu Xiao  Is a corresponding author
  1. University of California, San Diego, United States
  2. Peking University, China

Abstract

Mutations in FAM20A cause tooth enamel defects known as Amelogenesis Imperfecta (AI) and renal calcification. We previously showed that Fam20A is a secretory pathway pseudokinase and allosterically activates the physiological casein kinase Fam20C to phosphorylate secreted proteins important for biomineralization (Cui et al., 2015). Here we report the nucleotide-free and ATP-bound structures of Fam20A. Fam20A exhibits a distinct disulfide bond pattern mediated by a unique insertion region. Loss of this insertion due to abnormal mRNA splicing interferes with the structure and function of Fam20A, resulting in AI. Fam20A binds ATP in the absence of divalent cations, and strikingly, ATP is bound in an inverted orientation compared to other kinases. Fam20A forms a dimer in the crystal, and residues in the dimer interface are critical for Fam20C activation. Together, these results provide structural insights into the function of Fam20A and shed light on the mechanism by which Fam20A mutations cause disease.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Jixin Cui

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Qinyu Zhu

    Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Hui Zhang

    Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael A Cianfrocco

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andres E Leschziner

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jack E Dixon

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    For correspondence
    jedixon@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Junyu Xiao

    The State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
    For correspondence
    junyuxiao@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1822-1701

Funding

National Natural Science Foundation of China (31570735)

  • Junyu Xiao

National Key Research & Development Plan (2016YFC0906000)

  • Junyu Xiao

National Institutes of Health (DK018849)

  • Jack E Dixon

National Institutes of Health (DK018024)

  • Jack E Dixon

Human Frontier Science Program (LT000659/2013-L)

  • Jixin Cui

Damon Runyon Cancer Research Foundation (DRG 2171-13)

  • Michael A Cianfrocco

Howard Hughes Medical Institute

  • Jack E Dixon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tony Hunter, Salk Institute for Biological Studies, United States

Version history

  1. Received: December 8, 2016
  2. Accepted: April 20, 2017
  3. Accepted Manuscript published: April 22, 2017 (version 1)
  4. Version of Record published: May 2, 2017 (version 2)

Copyright

© 2017, Cui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,772
    views
  • 397
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jixin Cui
  2. Qinyu Zhu
  3. Hui Zhang
  4. Michael A Cianfrocco
  5. Andres E Leschziner
  6. Jack E Dixon
  7. Junyu Xiao
(2017)
Structure of Fam20A reveals a pseudokinase featuring unique disulfide pattern and inverted ATP-binding
eLife 6:e23990.
https://doi.org/10.7554/eLife.23990

Share this article

https://doi.org/10.7554/eLife.23990

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.