USP5/Leon deubiquitinase confines postsynaptic growth by maintaining ubiquitin homeostasis through Ubiquilin

  1. Chien-Hsiang Wang
  2. Yi-Chun Huang
  3. Pei-Yi Chen
  4. Ying-Ju Cheng
  5. Hsiu-Hua Kao
  6. Haiwei Pi
  7. Cheng-Ting Chien  Is a corresponding author
  1. Academia Sinica, Taiwan, Republic of China
  2. Chang Gung University, Taiwan, Republic of China

Abstract

Synapse formation and growth are tightly controlled processes. How synaptic growth is terminated after reaching proper size remains unclear. Here, we show that Leon, the Drosophila USP5 deubiquitinase, controls postsynaptic growth. In leon mutants, postsynaptic specializations of neuromuscular junctions are dramatically expanded, including the subsynaptic reticulum, the postsynaptic density, and the glutamate receptor cluster. Expansion of these postsynaptic features is caused by a disruption of ubiquitin homeostasis with accumulation of free ubiquitin chains and ubiquitinated substrates in the leon mutant. Accumulation of Ubiquilin (Ubqn), the ubiquitin receptor whose human homolog ubiquilin 2 is associated with familial amyotrophic lateral sclerosis, also contributes to defects in postsynaptic growth and ubiquitin homeostasis. Importantly, accumulations of postsynaptic proteins cause different aspects of postsynaptic overgrowth in leon mutants. Thus, the deubiquitinase Leon maintains ubiquitin homeostasis and proper Ubqn levels, preventing postsynaptic proteins from accumulation to confine postsynaptic growth.

Article and author information

Author details

  1. Chien-Hsiang Wang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yi-Chun Huang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  3. Pei-Yi Chen

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ying-Ju Cheng

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  5. Hsiu-Hua Kao

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  6. Haiwei Pi

    Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  7. Cheng-Ting Chien

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    For correspondence
    ctchien@gate.sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7906-7173

Funding

Academia Sinica

  • Chien-Hsiang Wang
  • Yi-Chun Huang
  • Pei-Yi Chen
  • Ying-Ju Cheng
  • Cheng-Ting Chien

Ministry of Science and Technology, Taiwan

  • Chien-Hsiang Wang
  • Yi-Chun Huang
  • Pei-Yi Chen
  • Ying-Ju Cheng
  • Cheng-Ting Chien

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo J Bellen, Baylor College of Medicine, United States

Version history

  1. Received: March 16, 2017
  2. Accepted: May 9, 2017
  3. Accepted Manuscript published: May 10, 2017 (version 1)
  4. Version of Record published: May 19, 2017 (version 2)

Copyright

© 2017, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,348
    views
  • 300
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chien-Hsiang Wang
  2. Yi-Chun Huang
  3. Pei-Yi Chen
  4. Ying-Ju Cheng
  5. Hsiu-Hua Kao
  6. Haiwei Pi
  7. Cheng-Ting Chien
(2017)
USP5/Leon deubiquitinase confines postsynaptic growth by maintaining ubiquitin homeostasis through Ubiquilin
eLife 6:e26886.
https://doi.org/10.7554/eLife.26886

Share this article

https://doi.org/10.7554/eLife.26886

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.