Abstract

Reduced protein homeostasis leading to increased protein instability is a common molecular feature of aging, but it remains unclear whether this is a cause or consequence of the aging process. In neurodegenerative diseases and other amyloidoses, specific proteins self-assemble into amyloid fibrils and accumulate as pathological aggregates in different tissues. More recently, widespread protein aggregation has been described during normal aging. Until now, an extensive characterization of the nature of age-dependent protein aggregation has been lacking. Here, we show that age-dependent aggregates are rapidly formed by newly synthesized proteins and have an amyloid-like structure resembling that of protein aggregates observed in disease. We then demonstrate that age-dependent protein aggregation accelerates the functional decline of different tissues in C. elegans. Together, these findings imply that amyloid-like aggregates contribute to the aging process and therefore could be important targets for strategies designed to maintain physiological functions in the late stages of life.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3 and Figure supplements 1, 3, 4, 7, 8 and 9.

Article and author information

Author details

  1. Chaolie Huang

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sara Wagner-Valladolid

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Amberley D Stephens

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7303-6392
  4. Raimund Jung

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Chetan Poudel

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Tessa Sinnige

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9353-126X
  7. Marie C Lechler

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicole Schlörit

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Meng Lu

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9311-2666
  10. Romain F Laine

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2151-4487
  11. Claire H Michel

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Michele Vendruscolo

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3616-1610
  13. Clemens F Kaminski

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5194-0962
  14. Gabriele S Kaminski Schierle

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    gsk20@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  15. Della C David

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    For correspondence
    della.david@dzne.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8597-9470

Funding

Deutsches Zentrum für Neurodegenerative Erkrankungen

  • Della C David

Biotechnology and Biological Sciences Research Council (BB/R021805/1)

  • Romain F Laine

European Commission (Marie Curie International Reintegration grant 322120)

  • Della C David

Engineering and Physical Sciences Research Council

  • Clemens F Kaminski

Wellcome (203249/Z/16/Z)

  • Gabriele S Kaminski Schierle

Medical Research Council (MR/N012453/1)

  • Gabriele S Kaminski Schierle

Alzheimer's Research UK (ARUK-PG2013-14)

  • Gabriele S Kaminski Schierle

Infinitus China Ltd

  • Clemens F Kaminski
  • Gabriele S Kaminski Schierle

Alzheimer's Research UK (Travel grant)

  • Amberley D Stephens

Biotechnology and Biological Sciences Research Council (BB/P027431/1)

  • Romain F Laine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Kuriyan, University of California, Berkeley, United States

Version history

  1. Received: October 22, 2018
  2. Accepted: May 2, 2019
  3. Accepted Manuscript published: May 3, 2019 (version 1)
  4. Version of Record published: May 17, 2019 (version 2)

Copyright

© 2019, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,499
    views
  • 815
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chaolie Huang
  2. Sara Wagner-Valladolid
  3. Amberley D Stephens
  4. Raimund Jung
  5. Chetan Poudel
  6. Tessa Sinnige
  7. Marie C Lechler
  8. Nicole Schlörit
  9. Meng Lu
  10. Romain F Laine
  11. Claire H Michel
  12. Michele Vendruscolo
  13. Clemens F Kaminski
  14. Gabriele S Kaminski Schierle
  15. Della C David
(2019)
Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in C. elegans
eLife 8:e43059.
https://doi.org/10.7554/eLife.43059

Share this article

https://doi.org/10.7554/eLife.43059

Further reading

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.