Low Wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice

  1. Fabienne Benz
  2. Viraya Wichitnaowarat
  3. Martin Lehmann
  4. Raoul F V Germano
  5. Diana Mihova
  6. Jadranka Macas
  7. Ralf H Adams
  8. M Mark Taketo
  9. Sylvaine Guérit
  10. Karl-Heinz Plate
  11. Benoit Vanhollebeke
  12. Stefan Liebner  Is a corresponding author
  1. University Hospital Frankfurt, Germany
  2. Université libre de Bruxelles, Belgium
  3. Max-Planck-Institute for Molecular Biomedicine, Germany
  4. Kyoto University, Japan

Abstract

The circumventricular organs (CVOs) in the central nervous system (CNS) lack a vascular blood-brain barrier (BBB), creating communication sites for sensory or secretory neurons, involved in body homeostasis. Wnt/β-catenin signaling is essential for BBB development and maintenance in endothelial cells (ECs) in most CNS vessels. Here we show that in mouse development, as well as in adult mouse and zebrafish, CVO ECs rendered Wnt-reporter negative, suggesting low level pathway activity. Characterization of the subfornical organ (SFO) vasculature revealed heterogenous claudin-5 (Cldn5) and Plvap/Meca32 expression indicative for tight and leaky vessels, respectively. Dominant, EC-specific β-catenin transcription in mice, converted phenotypically leaky into BBB-like vessels, by augmenting Cldn5+ vessels, stabilizing junctions and by reducing Plvap/Meca32+ and fenestrated vessels, resulting in decreased tracer permeability. Endothelial tightening augmented neuronal activity in the SFO of water restricted mice. Hence, regulating the SFO vessel barrier may influence neuronal function in the context of water homeostasis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are provided for Figures 4F-H, 5C, 6B, 7D, 8E-F, 9C as well as in Figure 4-figure supplement 1C, Figure 4-figure supplement 3D, Figure 8-figure supplement 1B. Raw data for all quantifications are provided in a separated MS Excel documents.

Article and author information

Author details

  1. Fabienne Benz

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Viraya Wichitnaowarat

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Martin Lehmann

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Raoul F V Germano

    Laboratory of Neurovascular Signaling, Department of Molecular Biology, Université libre de Bruxelles, Bruxelles, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1247-0689
  5. Diana Mihova

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jadranka Macas

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ralf H Adams

    Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3031-7677
  8. M Mark Taketo

    Division of Experimental Therapeutics, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Sylvaine Guérit

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Karl-Heinz Plate

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Benoit Vanhollebeke

    Laboratory of Neurovascular Signaling, Department of Molecular Biology, Université libre de Bruxelles, Bruxelles, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0353-365X
  12. Stefan Liebner

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    For correspondence
    stefan.liebner@kgu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4656-2258

Funding

Horizon 2020 Framework Programme (BtRAIN)

  • Raoul F V Germano
  • Benoit Vanhollebeke
  • Stefan Liebner

Deutsche Forschungsgemeinschaft (LI 911/5-1)

  • Fabienne Benz
  • Ralf H Adams
  • Sylvaine Guérit
  • Stefan Liebner

Landes-Offensive zur Entwicklung Wissenschaftlich- ökonomischer Exzellenz Program of the Center for Personalized Translational Epilepsy Research (TP8)

  • Stefan Liebner

Goethe University Frankfurt - Line A

  • Sylvaine Guérit

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elisabetta Dejana, FIRC Institute of Molecular Oncology, Italy

Ethics

Animal experimentation: Animals were housed under standard conditions and fed ad libitum. All experimental protocols, handling and use of mice were approved by the Regierungspräsidium Darmstadt, Germany (FK/1052 and FK/1108). All animal handling was performed to minimize suffering.

Version history

  1. Received: November 21, 2018
  2. Accepted: March 28, 2019
  3. Accepted Manuscript published: April 1, 2019 (version 1)
  4. Version of Record published: April 24, 2019 (version 2)

Copyright

© 2019, Benz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,356
    views
  • 694
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabienne Benz
  2. Viraya Wichitnaowarat
  3. Martin Lehmann
  4. Raoul F V Germano
  5. Diana Mihova
  6. Jadranka Macas
  7. Ralf H Adams
  8. M Mark Taketo
  9. Sylvaine Guérit
  10. Karl-Heinz Plate
  11. Benoit Vanhollebeke
  12. Stefan Liebner
(2019)
Low Wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice
eLife 8:e43818.
https://doi.org/10.7554/eLife.43818

Share this article

https://doi.org/10.7554/eLife.43818

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.