Neuroblast-specific chromatin landscapes allows the integration of spatial and temporal cues during Drosophila neurogenesis

  1. Sonia Q Sen
  2. Sachin Chanchani
  3. Tony D Southall
  4. Chris Q Doe  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Oregon, United States
  2. Imperial College London, United Kingdom

Abstract

Spatial and temporal cues are required to specify neuronal diversity, but how these cues are integrated in neural progenitors remains unknown. Drosophila progenitors (neuroblasts) are a good model: they are individually identifiable with relevant spatial and temporal transcription factors known. Here we test whether spatial/temporal factors act independently or sequentially in neuroblasts. We used Targeted-DamID to identify genomic binding sites of the Hunchback temporal factor in two neuroblasts (NB5-6 and NB7-4) that make different progeny. Hunchback targets were different in each neuroblast, ruling out the independent specification model. Moreover, each neuroblast had distinct open chromatin domains, which correlated with differential Hb-bound loci in each neuroblast. Importantly, Gsb/Pax3 spatial factor binding correlated with open chromatin in NB5-6, but not NB7-4. Our data support a model in which early-acting spatial factors establish neuroblast-specific open chromatin domains, leading to neuroblast-specific temporal factor binding and the production of different neurons in each neuroblast lineage.

Data availability

Data are available via the NCBI Gene Expression Omnibus database (accession number GSE123272).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sonia Q Sen

    Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sachin Chanchani

    Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tony D Southall

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8645-4198
  4. Chris Q Doe

    Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
    For correspondence
    cdoe@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5980-8029

Funding

Howard Hughes Medical Institute

  • Chris Q Doe

National Institutes of Health (HD27056)

  • Chris Q Doe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gail Mandel, Oregon Health and Science University, United States

Version history

  1. Received: November 30, 2018
  2. Accepted: January 24, 2019
  3. Accepted Manuscript published: January 29, 2019 (version 1)
  4. Version of Record published: February 15, 2019 (version 2)

Copyright

© 2019, Sen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,975
    views
  • 553
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonia Q Sen
  2. Sachin Chanchani
  3. Tony D Southall
  4. Chris Q Doe
(2019)
Neuroblast-specific chromatin landscapes allows the integration of spatial and temporal cues during Drosophila neurogenesis
eLife 8:e44036.
https://doi.org/10.7554/eLife.44036

Share this article

https://doi.org/10.7554/eLife.44036

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.