Abstract

Allosteric interactions between the voltage-sensing domain (VSD), the Ca2+-binding sites, and the pore domain govern the mammalian Ca2+- and voltage-activated K+ (BK) channel opening. However, the functional relevance of the crosstalk between the Ca2+- and voltage-sensing mechanisms on BK channel gating is still debated. We examined the energetic interaction between Ca2+ binding and VSD activation by investigating the effects of internal Ca2+ on BK channel gating currents. Our results indicate that Ca2+ sensor occupancy has a strong impact on VSD activation through a coordinated interaction mechanism in which Ca2+ binding to a single α-subunit affects all VSDs equally. Moreover, the two distinct high-affinity Ca2+-binding sites contained in the C-terminus domains, RCK1 and RCK2, contribute equally to decrease the free energy necessary to activate the VSD. We conclude that voltage-dependent gating and pore opening in BK channels is modulated to a great extent by the interaction between Ca2+ sensors and VSDs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yenisleidy Lorenzo-Ceballos

    Doctorado en Ciencias Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4309-9314
  2. Willy Carrasquel-Ursulaez

    Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
    Competing interests
    The authors declare that no competing interests exist.
  3. Karen Castillo

    Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
    Competing interests
    The authors declare that no competing interests exist.
  4. Osvaldo Alvarez

    Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
    Competing interests
    The authors declare that no competing interests exist.
  5. Ramon Latorre

    Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
    For correspondence
    ramon.latorre@uv.cl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6044-5795

Funding

AFOSR (No. FA9550-16-1-0384)

  • Ramon Latorre

FONDECYT (Grant No. 1180999)

  • Karen Castillo

CONICYT-PFCHA (Doctoral fellowship No. 63140149)

  • Yenisleidy Lorenzo-Ceballos

Millennium Scientific Initiative of the Chilean Ministry of Economy, Development, and Tourism (P029-022-F)

  • Yenisleidy Lorenzo-Ceballos
  • Willy Carrasquel-Ursulaez
  • Karen Castillo
  • Osvaldo Alvarez
  • Ramon Latorre

FONDECYT (Grant No. 1150273)

  • Ramon Latorre

FONDECYT (Grant No. 1190203)

  • Ramon Latorre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard Aldrich, The University of Texas at Austin, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Ethics Committee for Animal Experimentation of the University of Valparaíso. All of the animals were handled according to approved institutional animal care and use committee protocols (BEA031-14) of the University of Valparaiso. All surgery was performed under tricaine anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: January 7, 2019
  2. Accepted: September 10, 2019
  3. Accepted Manuscript published: September 11, 2019 (version 1)
  4. Version of Record published: September 26, 2019 (version 2)

Copyright

© 2019, Lorenzo-Ceballos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,559
    views
  • 322
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yenisleidy Lorenzo-Ceballos
  2. Willy Carrasquel-Ursulaez
  3. Karen Castillo
  4. Osvaldo Alvarez
  5. Ramon Latorre
(2019)
Calcium-driven regulation of voltage-sensing domains in BK channels
eLife 8:e44934.
https://doi.org/10.7554/eLife.44934

Share this article

https://doi.org/10.7554/eLife.44934

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.