Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes

Abstract

Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor a in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Ra deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function.

Data availability

Sequencing data have been deposited to GEO.

The following data sets were generated

Article and author information

Author details

  1. Prashant Rajbhandari

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    prashant.rajbhandari@gmail.com
    Competing interests
    No competing interests declared.
  2. Douglas Arneson

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Sydney K Hart

    Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  4. In Sook Ahn

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Graciel Diamante

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Luis C Santos

    Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  7. Nima Zaghari

    Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. An-Chieh Feng

    Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Brandon J Thomas

    Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Laurent Vergnes

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  11. Stephen D Lee

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  12. Abha K Rajbhandari

    Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  13. Karen Reue

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  14. Stephen T Smale

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  15. Xia Yang

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  16. Peter Tontonoz

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    ptontonoz@mednet.ucla.edu
    Competing interests
    Peter Tontonoz, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1259-0477

Funding

National Institutes of Health (K99 DK114571)

  • Prashant Rajbhandari

National Institutes of Health (DK063491)

  • Peter Tontonoz

National Institutes of Health (DK120851)

  • Peter Tontonoz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Czech, University of Massachusetts Medical School, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (99-131) of the University of California, Los Angeles.

Version history

  1. Received: June 19, 2019
  2. Accepted: October 22, 2019
  3. Accepted Manuscript published: October 23, 2019 (version 1)
  4. Version of Record published: November 7, 2019 (version 2)

Copyright

© 2019, Rajbhandari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,168
    views
  • 1,931
    downloads
  • 107
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Prashant Rajbhandari
  2. Douglas Arneson
  3. Sydney K Hart
  4. In Sook Ahn
  5. Graciel Diamante
  6. Luis C Santos
  7. Nima Zaghari
  8. An-Chieh Feng
  9. Brandon J Thomas
  10. Laurent Vergnes
  11. Stephen D Lee
  12. Abha K Rajbhandari
  13. Karen Reue
  14. Stephen T Smale
  15. Xia Yang
  16. Peter Tontonoz
(2019)
Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes
eLife 8:e49501.
https://doi.org/10.7554/eLife.49501

Share this article

https://doi.org/10.7554/eLife.49501

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.