Activation of Hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin

  1. Qi Deng
  2. Ping Li
  3. Manju Che
  4. Jiajia Liu
  5. Soma Biswas
  6. Gang Ma
  7. Lin He
  8. Zhanying Wei
  9. Zhenlin Zhang
  10. Yingzi Yang
  11. Huijuan Liu  Is a corresponding author
  12. Baojie Li  Is a corresponding author
  1. Shanghai Jiao Tong University, China
  2. Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
  3. Harvard School of Dental Medicine, United States

Abstract

Indian Hedgehog (IHH) signaling, a key regulator of skeletal development, is highly activated in cartilage and bone tumors. Yet deletion of Ptch1, encoding an inhibitor of IHH receptor Smoothened (SMO), in chondrocyte or osteoblasts does not cause tumorigenesis. Here, we show that Ptch1 deletion in mice Prrx1+ mesenchymal stem/stromal cells (MSCs) promotes MSC proliferation and osteogenic and chondrogenic differentiation but inhibits adipogenic differentiation. Moreover, Ptch1 deletion led to development of osteoarthritis-like phenotypes, exostoses, enchondroma, and osteosarcoma in Smo-Gli1/2-dependent manners. The cartilage and bone tumors are originated from Prrx1+ lineage cells and express low levels of osteoblast and chondrocyte markers, respectively. Mechanistically, Ptch1 deletion increases the expression of Wnt5a/6 and leads to enhanced b-Catenin activation. Inhibiting Wnt/b-Catenin pathway suppresses development of skeletal anomalies including enchondroma and osteosarcoma. These findings suggest that cartilage/bone tumors arise from their early progenitor cells and identify the Wnt/b-Catenin pathway as a pharmacological target for cartilage/bone neoplasms.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Qi Deng

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ping Li

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Manju Che

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiajia Liu

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Soma Biswas

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1427-2678
  6. Gang Ma

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lin He

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhanying Wei

    Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhenlin Zhang

    Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yingzi Yang

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3933-887X
  11. Huijuan Liu

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    liuhj@sjtu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  12. Baojie Li

    Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    libj@sjtu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3913-1062

Funding

National Natural Science Foundation of China (81373210)

  • Baojie Li

National Natural Science Foundation of China (81520108012)

  • Baojie Li

National Natural Science Foundation of China (91542120)

  • Baojie Li

National Key Research and Development Program of China (2017YFA0103602)

  • Baojie Li

Schaefer Research Scholarship

  • Baojie Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: All mouse work was carried out following the recommendations from the NationalResearch Council Guide for the Care and Use of Laboratory Animals, with the protocols approved by the Institutional Animal Care and Use Committee of Shanghai, China [SYXK (SH) 2011-0112]. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: July 15, 2019
  2. Accepted: August 31, 2019
  3. Accepted Manuscript published: September 4, 2019 (version 1)
  4. Version of Record published: September 27, 2019 (version 2)

Copyright

© 2019, Deng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,395
    views
  • 714
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qi Deng
  2. Ping Li
  3. Manju Che
  4. Jiajia Liu
  5. Soma Biswas
  6. Gang Ma
  7. Lin He
  8. Zhanying Wei
  9. Zhenlin Zhang
  10. Yingzi Yang
  11. Huijuan Liu
  12. Baojie Li
(2019)
Activation of Hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin
eLife 8:e50208.
https://doi.org/10.7554/eLife.50208

Share this article

https://doi.org/10.7554/eLife.50208

Further reading

    1. Cancer Biology
    Célia Guérin, David Tulasne
    Review Article

    Tyrosine kinase inhibitors (TKI) directed against MET have been recently approved to treat advanced non-small cell lung cancer (NSCLC) harbouring activating MET mutations. This success is the consequence of a long characterization of MET mutations in cancers, which we propose to outline in this review. MET, a receptor tyrosine kinase (RTK), displays in a broad panel of cancers many deregulations liable to promote tumour progression. The first MET mutation was discovered in 1997, in hereditary papillary renal cancer (HPRC), providing the first direct link between MET mutations and cancer development. As in other RTKs, these mutations are located in the kinase domain, leading in most cases to ligand-independent MET activation. In 2014, novel MET mutations were identified in several advanced cancers, including lung cancers. These mutations alter splice sites of exon 14, causing in-frame exon 14 skipping and deletion of a regulatory domain. Because these mutations are not located in the kinase domain, they are original and their mode of action has yet to be fully elucidated. Less than five years after the discovery of such mutations, the efficacy of a MET TKI was evidenced in NSCLC patients displaying MET exon 14 skipping. Yet its use led to a resistance mechanism involving acquisition of novel and already characterized MET mutations. Furthermore, novel somatic MET mutations are constantly being discovered. The challenge is no longer to identify them but to characterize them in order to predict their transforming activity and their sensitivity or resistance to MET TKIs, in order to adapt treatment.

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.