Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo

  1. King Faisal Yambire
  2. Christine Rostosky
  3. Takashi Watanabe
  4. David Pacheu-Grau
  5. Sylvia Torres-Odio
  6. Angela Sanchez-Guerrero
  7. Ola Senderovich
  8. Esther G Meyron-Holtz
  9. Ira Milosevic
  10. Jens Frahm
  11. A Phillip West
  12. Nuno Raimundo  Is a corresponding author
  1. University Medical Center Göttingen, Germany
  2. European Neuroscience Institute, Germany
  3. Max-Planck Institute for Biophysical Chemistry, Germany
  4. Texas A&M University Health Science Center, United States
  5. Technion Israel Institute of Technology, Israel

Abstract

Lysosomal acidification is a key feature of healthy cells. Inability to maintain lysosomal acidic pH is associated with aging and neurodegenerative diseases. However, the mechanisms elicited by impaired lysosomal acidification remain poorly understood. We show here that inhibition of lysosomal acidification triggers cellular iron deficiency, which results in impaired mitochondrial function and non-apoptotic cell death. These effects are recovered by supplying iron via a lysosome-independent pathway. Notably, iron deficiency is sufficient to trigger inflammatory signaling in cultured primary neurons. Using a mouse model of impaired lysosomal acidification, we observed a robust iron deficiency response in the brain, verified by in vivo magnetic resonance imaging. Furthermore, the brains of these mice present a pervasive inflammatory signature associated with instability of mitochondrial DNA (mtDNA), both corrected by supplementation of the mice diet with iron. Our results highlight a novel mechanism linking impaired lysosomal acidification, mitochondrial malfunction and inflammation in vivo.

Data availability

We generated RNAseq data from brain of mice (WT and KO), which is deposited in Gene Expression Omnibus under the serial number Series GSE134704.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. King Faisal Yambire

    Institute of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Christine Rostosky

    Synaptic Vesicle Recycling, European Neuroscience Institute, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Takashi Watanabe

    Biomedizinische NMR, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. David Pacheu-Grau

    Institute of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Sylvia Torres-Odio

    Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Angela Sanchez-Guerrero

    Institute of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ola Senderovich

    Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Esther G Meyron-Holtz

    Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Ira Milosevic

    Synaptic Vesicle Recycling, European Neuroscience Institute, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6440-3763
  10. Jens Frahm

    Biomedizinische NMR, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8279-884X
  11. A Phillip West

    Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nuno Raimundo

    Institute of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
    For correspondence
    nuno.raimundo@med.uni-goettingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5988-9129

Funding

H2020 European Research Council (337327)

  • Nuno Raimundo

Deutsche Forschungsgemeinschaft (SFB1190-P02)

  • Ira Milosevic
  • Nuno Raimundo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University School of Medicine, United States

Ethics

Animal experimentation: The experiments were performed under the permit 15-883 by the authority for animal research in Lower Saxony, Germany (LAVES).

Version history

  1. Received: August 12, 2019
  2. Accepted: December 2, 2019
  3. Accepted Manuscript published: December 3, 2019 (version 1)
  4. Version of Record published: December 17, 2019 (version 2)

Copyright

© 2019, Yambire et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,834
    views
  • 1,680
    downloads
  • 142
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. King Faisal Yambire
  2. Christine Rostosky
  3. Takashi Watanabe
  4. David Pacheu-Grau
  5. Sylvia Torres-Odio
  6. Angela Sanchez-Guerrero
  7. Ola Senderovich
  8. Esther G Meyron-Holtz
  9. Ira Milosevic
  10. Jens Frahm
  11. A Phillip West
  12. Nuno Raimundo
(2019)
Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo
eLife 8:e51031.
https://doi.org/10.7554/eLife.51031

Share this article

https://doi.org/10.7554/eLife.51031

Further reading

    1. Cell Biology
    Yoko Nakai-Futatsugi, Jianshi Jin ... Masayo Takahashi
    Research Article

    Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signaling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor-1. Overall, we implicate CYRI-B as a mediator of growth and signaling in pancreatic cancer, providing new insights into pathways controlling metastasis.