Imp/IGF2BP levels modulate individual neural stem cell growth and division through myc mRNA stability

  1. Tamsin J Samuels
  2. Aino I Järvelin
  3. David Ish-Horowicz
  4. Ilan Davis  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University College London, United Kingdom

Abstract

The numerous neurons and glia that form the brain originate from tightly controlled growth and division of neural stem cells, regulated systemically by important known stem cell-extrinsic signals. However, the cell-intrinsic mechanisms that control the distinctive proliferation rates of individual neural stem cells are unknown. Here, we show that the size and division rates of Drosophila neural stem cells (neuroblasts) are controlled by the highly conserved RNA binding protein Imp (IGF2BP), via one of its top binding targets in the brain, myc mRNA. We show that Imp stabilises myc mRNA leading to increased Myc protein levels, larger neuroblasts, and faster division rates. Declining Imp levels throughout development limit myc mRNA stability to restrain neuroblast growth and division, and heterogeneous Imp expression correlates with myc mRNA stability between individual neuroblasts in the brain. We propose that Imp-dependent regulation of myc mRNA stability fine-tunes individual neural stem cell proliferation rates.

Data availability

The presented RNA sequencing data has been deposited with Gene Expression Omnibus (GEO), with accession number GSE140704.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Tamsin J Samuels

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Aino I Järvelin

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. David Ish-Horowicz

    MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Ilan Davis

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    For correspondence
    ilan.davis@bioch.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5385-3053

Funding

Wellcome (105363/Z/14/Z)

  • Tamsin J Samuels

Wellcome (096144/Z/17/Z)

  • Aino I Järvelin
  • Ilan Davis

Wellcome (209412/Z/17/Z)

  • Tamsin J Samuels
  • Aino I Järvelin
  • Ilan Davis

University College London

  • David Ish-Horowicz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claude Desplan, New York University, United States

Version history

  1. Received: August 31, 2019
  2. Accepted: January 13, 2020
  3. Accepted Manuscript published: January 14, 2020 (version 1)
  4. Version of Record published: February 17, 2020 (version 2)

Copyright

© 2020, Samuels et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,879
    views
  • 436
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tamsin J Samuels
  2. Aino I Järvelin
  3. David Ish-Horowicz
  4. Ilan Davis
(2020)
Imp/IGF2BP levels modulate individual neural stem cell growth and division through myc mRNA stability
eLife 9:e51529.
https://doi.org/10.7554/eLife.51529

Share this article

https://doi.org/10.7554/eLife.51529

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.