Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation

Abstract

Perturbation of addition of second heart field (SHF) cardiac progenitor cells to the poles of the heart tube results in congenital heart defects (CHD). The transcriptional programs and upstream regulatory events operating in different subpopulations of the SHF remain unclear. Here, we profile the transcriptome and chromatin accessibility of anterior and posterior SHF sub-populations at genome-wide levels and demonstrate that Hoxb1 negatively regulates differentiation in the posterior SHF. Spatial mis-expression of Hoxb1 in the anterior SHF results in hypoplastic right ventricle. Activation of Hoxb1 in embryonic stem cells arrests cardiac differentiation, whereas Hoxb1-deficient mouse embryos display premature cardiac differentiation. Moreover, ectopic differentiation in the posterior SHF of embryos lacking both Hoxb1 and its paralog Hoxa1 results in atrioventricular septal defects. Our results show that Hoxb1 plays a key role in patterning cardiac progenitor cells that contribute to both cardiac poles and provide new insights into the pathogenesis of CHD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 3.

Article and author information

Author details

  1. Sonia Stefanovic

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Brigitte Laforest

    Department of Pediatrics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6919-8922
  3. Jean-Pierre Desvignes

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabienne Lescroart

    INSERM, MMG, U1251, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4942-7921
  5. Laurent Argiro

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Corinne Maurel-Zaffran

    IBDM, CNRS-AMU, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  7. David Salgado

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Elise Plaindoux

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Christopher De Bono

    IBDM, CNRS UMR7288, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Kristijan Pazur

    Paul Langerhans Institute Dresden of Helmholtz Centre Munich, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Magali Théveniau-Ruissy

    INSERM U1251 Marseille Medical Genetics, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7346-7096
  12. Christophe Béroud

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Michel Puceat

    INSERM U1251 Marseille Medical Genetics, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9055-7563
  14. Anthony Gavalas

    Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Robert G Kelly

    CNRS UMR 7288, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Stephane Zaffran

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    For correspondence
    stephane.zaffran@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0811-418X

Funding

Agence Nationale de la Recherche (ANR-13-BSV2-0003)

  • Michel Puceat
  • Robert G Kelly
  • Stephane Zaffran

Agence Nationale de la Recherche (ANR-18-CE13-0011)

  • Robert G Kelly
  • Stephane Zaffran

Fondation Lefoulon Delalande

  • Sonia Stefanovic
  • Fabienne Lescroart

Association Française contre les Myopathies (MNH-Decrypt)

  • Stephane Zaffran

Fondation pour la Recherche Médicale

  • Brigitte Laforest

Fondation pour la Recherche Médicale (DEQ20150331717)

  • Robert G Kelly

European Commission (H2020-MSCA-IF-2014)

  • Sonia Stefanovic

Fondation Leducq (Research Equipment and Technological Platform Awards)

  • Michel Puceat
  • Robert G Kelly
  • Stephane Zaffran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal procedures were carried out under protocols approved by a national appointed ethical committee for animal experimentation (Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche; Authorization N{degree sign}32-08102012).

Copyright

© 2020, Stefanovic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,978
    views
  • 395
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonia Stefanovic
  2. Brigitte Laforest
  3. Jean-Pierre Desvignes
  4. Fabienne Lescroart
  5. Laurent Argiro
  6. Corinne Maurel-Zaffran
  7. David Salgado
  8. Elise Plaindoux
  9. Christopher De Bono
  10. Kristijan Pazur
  11. Magali Théveniau-Ruissy
  12. Christophe Béroud
  13. Michel Puceat
  14. Anthony Gavalas
  15. Robert G Kelly
  16. Stephane Zaffran
(2020)
Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation
eLife 9:e55124.
https://doi.org/10.7554/eLife.55124

Share this article

https://doi.org/10.7554/eLife.55124

Further reading

    1. Developmental Biology
    Cora Demler, John C Lawlor ... Natasza A Kurpios
    Research Article

    Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals remain poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.

    1. Developmental Biology
    Valeria Sulzyk, Ludmila Curci ... Patricia S Cuasnicu
    Research Article

    Numerous reports showed that the epididymis plays key roles in the acquisition of sperm fertilizing ability but its contribution to embryo development remains less understood. Female mice mated with males with simultaneous mutations in Crisp1 and Crisp3 genes exhibited normal in vivo fertilization but impaired embryo development. In this work, we found that this phenotype was not due to delayed fertilization, and it was observed in eggs fertilized by epididymal sperm either in vivo or in vitro. Of note, eggs fertilized in vitro by mutant sperm displayed impaired meiotic resumption unrelated to Ca2+ oscillations defects during egg activation, supporting potential sperm DNA defects. Interestingly, cauda but not caput epididymal mutant sperm exhibited increased DNA fragmentation, revealing that DNA integrity defects appear during epididymal transit. Moreover, exposing control sperm to mutant epididymal fluid or to Ca2+-supplemented control fluid significantly increased DNA fragmentation. This, together with the higher intracellular Ca2+ levels detected in mutant sperm, supports a dysregulation in Ca2+ homeostasis within the epididymis and sperm as the main factor responsible for embryo development failure. These findings highlight the contribution of the epididymis beyond fertilization and identify CRISP1 and CRISP3 as novel factors essential for sperm DNA integrity and early embryo development.