Inter-membrane association of the Sec and BAM translocons for bacterial outer-membrane biogenesis

  1. Sara Alvira
  2. Daniel W Watkins
  3. Luca A Troman
  4. William J Allen
  5. James Stuart Lorriman
  6. Gianluca Degliesposti
  7. Eli J Cohen
  8. Morgan Beeby
  9. Bertram Daum
  10. Vicki AM Gold
  11. J Mark Skehel
  12. Ian Collinson  Is a corresponding author
  1. University of Bristol, United Kingdom
  2. Francis Crick Institute, United Kingdom
  3. Imperial College London, United Kingdom
  4. University of Exeter, United Kingdom

Abstract

The outer-membrane of Gram-negative bacteria is critical for surface adhesion, pathogenicity, antibiotic resistance and survival. The major constituent – hydrophobic b-barrel Outer-Membrane Proteins (OMPs) – are first secreted across the inner-membrane through the Sec-translocon for delivery to periplasmic chaperones e.g. SurA, which prevent aggregation. OMPs are then offloaded to the b-Barrel Assembly Machinery (BAM) in the outer-membrane for insertion and folding. We show the Holo-TransLocon (HTL) – an assembly of the protein-channel core-complex SecYEG, the ancillary sub-complex SecDF, and the membrane 'insertase' YidC – contacts BAM through periplasmic domains of SecDF and YidC, ensuring efficient OMP maturation. Furthermore, the proton-motive-force (PMF) across the inner-membrane acts at distinct stages of protein secretion: (1) SecA-driven translocation through SecYEG; and (2) communication of conformational changes via SecDF across the periplasm to BAM. The latter presumably drives efficient passage of OMPs. These interactions provide insights of inter-membrane organisation and communication, the importance of which is becoming increasingly apparent.

Data availability

All data generated or analysed during this study are included in the manuscript and supplementary information. Information regarding statistical testing is located in materials and methods and corresponding figure legends.

Article and author information

Author details

  1. Sara Alvira

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel W Watkins

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3825-5036
  3. Luca A Troman

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. William J Allen

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9513-4786
  5. James Stuart Lorriman

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1755-0805
  6. Gianluca Degliesposti

    Mass Spectrometry science technology platform, Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Eli J Cohen

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Morgan Beeby

    Department of Life Sciencesa, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6413-9835
  9. Bertram Daum

    Living Systems Institute, University of Exeter, Frankfurt, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3767-264X
  10. Vicki AM Gold

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6908-0745
  11. J Mark Skehel

    Mass Spectrometry science technology platform, Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Ian Collinson

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    For correspondence
    ian.collinson@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3931-0503

Funding

Biotechnology and Biological Sciences Research Council (BB/S008349/1)

  • Sara Alvira

EMBO (LTFCOFUND2013)

  • Sara Alvira

EMBO (GA-2013-609409)

  • Sara Alvira

Biotechnology and Biological Sciences Research Council (BB/S008349/1)

  • Daniel W Watkins

Biotechnology and Biological Sciences Research Council (BB/S008349/1)

  • Ian Collinson

Biotechnology and Biological Sciences Research Council (BB/N015126/1)

  • Ian Collinson

Biotechnology and Biological Sciences Research Council (BB/N015126/1)

  • Daniel W Watkins

Biotechnology and Biological Sciences Research Council (BB/M003604/1)

  • Ian Collinson

Biotechnology and Biological Sciences Research Council (BB/M003604/1)

  • Sara Alvira

Biotechnology and Biological Sciences Research Council (BB/J014400/1)

  • Luca A Troman

EMBO (ALTF 710-2015)

  • Sara Alvira

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Volker Dötsch, Goethe University, Germany

Version history

  1. Received: July 2, 2020
  2. Accepted: November 3, 2020
  3. Accepted Manuscript published: November 4, 2020 (version 1)
  4. Version of Record published: November 27, 2020 (version 2)

Copyright

© 2020, Alvira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,456
    views
  • 581
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Alvira
  2. Daniel W Watkins
  3. Luca A Troman
  4. William J Allen
  5. James Stuart Lorriman
  6. Gianluca Degliesposti
  7. Eli J Cohen
  8. Morgan Beeby
  9. Bertram Daum
  10. Vicki AM Gold
  11. J Mark Skehel
  12. Ian Collinson
(2020)
Inter-membrane association of the Sec and BAM translocons for bacterial outer-membrane biogenesis
eLife 9:e60669.
https://doi.org/10.7554/eLife.60669

Share this article

https://doi.org/10.7554/eLife.60669

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.