The Arabidopsis active demethylase ROS1 cis-regulates defense genes by erasing DNA methylation at promoter-regulatory regions

Abstract

Active DNA demethylation has emerged as an important regulatory process of plant and mammalian immunity. However, very little is known about the mechanisms by which active demethylation controls transcriptional immune reprogramming and disease resistance. Here, we first show that the Arabidopsis active demethylase ROS1 promotes basal resistance towards Pseudomonas syringae by antagonizing RNA-directed DNA methylation (RdDM). Furthermore, we find that ROS1 facilitates the flagellin-triggered induction of the disease resistance gene RMG1 by limiting RdDM at the 3' boundary of a remnant RC/Helitron transposable element (TE) embedded in its promoter. We further identify flagellin-responsive ROS1 putative primary targets, and show that at a subset of promoters, ROS1 erases methylation at discrete regions exhibiting WRKY transcription factors (TFs) binding. In particular, we demonstrate that ROS1 removes methylation at the orphan immune receptor RLP43 promoter, to ensure DNA binding of WRKY TFs. Finally, we show that ROS1-directed demethylation of the RMG1 and RLP43 promoters is causal for both flagellin responsiveness of these genes and for basal resistance. Overall, these findings significantly advance our understanding of how active demethylases shape transcriptional immune reprogramming to enable antibacterial resistance.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all main figures and for supplemental figures. Sequencing data have been deposited in SRA under the accession code SRP133028.

The following data sets were generated

Article and author information

Author details

  1. Thierry Halter

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Jingyu Wang

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Delase Amesefe

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Emmanuelle Lastrucci

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Magali Charvin

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Meenu Singla Rastogi

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Lionel Navarro

    Biology, IBENS-CNRS, Paris, France
    For correspondence
    lionel.navarro@ens.psl.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1083-9478

Funding

H2020 European Research Council (Silencing & Immunity (281749))

  • Lionel Navarro

Agence Nationale de la Recherche (NEPRHON (ANR-18-CE20-0020))

  • Lionel Navarro

H2020 Marie Skłodowska-Curie Actions (EU Project 661715 - BASILA)

  • Thierry Halter

Fondation Pierre-Gilles de Gennes pour la recherche

  • Thierry Halter

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02PSL)

  • Lionel Navarro

Agence Nationale de la Recherche (ANR-10-LABX-54 MEMOLIFE)

  • Lionel Navarro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Daniel Zilberman, John Innes Centre, United Kingdom

Version history

  1. Received: September 10, 2020
  2. Accepted: January 19, 2021
  3. Accepted Manuscript published: January 20, 2021 (version 1)
  4. Version of Record published: February 12, 2021 (version 2)

Copyright

© 2021, Halter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,884
    views
  • 717
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thierry Halter
  2. Jingyu Wang
  3. Delase Amesefe
  4. Emmanuelle Lastrucci
  5. Magali Charvin
  6. Meenu Singla Rastogi
  7. Lionel Navarro
(2021)
The Arabidopsis active demethylase ROS1 cis-regulates defense genes by erasing DNA methylation at promoter-regulatory regions
eLife 10:e62994.
https://doi.org/10.7554/eLife.62994

Share this article

https://doi.org/10.7554/eLife.62994

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.