Curcumin promotes AApoAII amyloidosis and peroxisome proliferation in mice by activating the PPARα signaling pathway

  1. Jian Dai  Is a corresponding author
  2. Ying Li
  3. Fuyuki Kametani
  4. Xiaoran Cui
  5. Yuichi Igarashi
  6. Jia Huo
  7. Hiroki Miyahara
  8. Masayuki Mori
  9. Keiichi Higuchi
  1. Shinshu University, Japan
  2. Tokyo Metropolitan Institute of Medical Science, Japan
  3. Shinshu University Graduate School of Medicine, Japan
  4. Third Hospital of Hebei Medical University, China

Abstract

Curcumin is a polyphenol compound that exhibits multiple physiological activities. To elucidate the mechanisms by which curcumin affects systemic amyloidosis, we investigated amyloid deposition and molecular changes in a mouse model of amyloid apolipoprotein A-II (AApoAII) amyloidosis, in which mice were fed a curcumin-supplemented diet. Curcumin supplementation for 12 weeks significantly increased AApoAII amyloid deposition relative to controls, especially in the liver and spleen. Liver weights and plasma ApoA-II and high-density lipoprotein concentrations were significantly elevated in curcumin-supplemented groups. RNA-sequence analysis revealed that curcumin intake affected hepatic lipid metabolism via the peroxisome proliferator-activated receptor (PPAR) pathway, especially PPARα activation, resulting in increased Apoa2 mRNA expression. The increase in liver weights was due to activation of PPARα and peroxisome proliferation. Taken together, these results demonstrate that curcumin is a PPARα activator and may affect expression levels of proteins involved in amyloid deposition to influence amyloidosis and metabolism in a complex manner.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jian Dai

    Aging Biology, Shinshu University, Matsumoto, Japan
    For correspondence
    daijian3@shinshu-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8097-6756
  2. Ying Li

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Fuyuki Kametani

    Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaoran Cui

    Shinshu University Graduate School of Medicine, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yuichi Igarashi

    Shinshu University Graduate School of Medicine, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Jia Huo

    Third Hospital of Hebei Medical University, Shijiazhuang, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Hiroki Miyahara

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Masayuki Mori

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Keiichi Higuchi

    Aging Biology, Shinshu University, Matsumoto, Japan
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministry of Education, Culture, Sports, Science and Technology (17H04063)

  • Jian Dai

Ministry of Education, Culture, Sports, Science and Technology (26670152)

  • Jian Dai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rudolph E Tanzi, Harvard University, United States

Ethics

Animal experimentation: All experiments were approved by the Committee for Animal Experiments of Shinshu University (Approval No. 280086). Mice were sacrificed by cardiac puncture under deep sevoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: September 28, 2020
  2. Accepted: January 10, 2021
  3. Accepted Manuscript published: January 26, 2021 (version 1)
  4. Version of Record published: February 12, 2021 (version 2)

Copyright

© 2021, Dai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,561
    views
  • 254
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jian Dai
  2. Ying Li
  3. Fuyuki Kametani
  4. Xiaoran Cui
  5. Yuichi Igarashi
  6. Jia Huo
  7. Hiroki Miyahara
  8. Masayuki Mori
  9. Keiichi Higuchi
(2021)
Curcumin promotes AApoAII amyloidosis and peroxisome proliferation in mice by activating the PPARα signaling pathway
eLife 10:e63538.
https://doi.org/10.7554/eLife.63538

Share this article

https://doi.org/10.7554/eLife.63538

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.