SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation

  1. David W Sanders
  2. Chanelle C Jumper
  3. Paul J Ackerman
  4. Dan Bracha
  5. Anita Donlic
  6. Hahn Kim
  7. Devin Kenney
  8. Ivan Castello-Serrano
  9. Saori Suzuki
  10. Tomokazu Tamura
  11. Alexander H Tavares
  12. Mohsan Saeed
  13. Alex S Holehouse
  14. Alexander Ploss
  15. Ilya Levental
  16. Florian Douam
  17. Robert F Padera
  18. Bruce D Levy
  19. Clifford P Brangwynne  Is a corresponding author
  1. Princeton University, United States
  2. Boston University, United States
  3. University of Virginia, United States
  4. Washington University School of Medicine, United States
  5. Harvard Medical School, United States

Abstract

Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins, and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files with the exception of raw imaging data (>400,000 Nikon ND2 files), which is not feasible to post online given its massive size (>1.5 TB). This data is available from the lead contact upon request, assuming the interested party provides a server with sufficient storage capacity. Raw data (computed fusion scores) from the drug repurposing screen is available in Supplemental File 1; bioinformatics, Supplemental File 3.

Article and author information

Author details

  1. David W Sanders

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  2. Chanelle C Jumper

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. Paul J Ackerman

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  4. Dan Bracha

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  5. Anita Donlic

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  6. Hahn Kim

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  7. Devin Kenney

    Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  8. Ivan Castello-Serrano

    University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  9. Saori Suzuki

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5233-6604
  10. Tomokazu Tamura

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1395-6610
  11. Alexander H Tavares

    Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  12. Mohsan Saeed

    Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  13. Alex S Holehouse

    Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, United States
    Competing interests
    Alex S Holehouse, A.S.H. is a consultant for Dewpoint Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4155-5729
  14. Alexander Ploss

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9322-7252
  15. Ilya Levental

    University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  16. Florian Douam

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  17. Robert F Padera

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  18. Bruce D Levy

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  19. Clifford P Brangwynne

    Princeton University, Princeton, United States
    For correspondence
    cbrangwy@princeton.edu
    Competing interests
    Clifford P Brangwynne, C.P.B. is a scientific founder and consultant for Nereid Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1350-9960

Funding

National Institute of General Medical Sciences (GM095467)

  • Bruce D Levy

National Heart, Lung, and Blood Institute (HL122531)

  • Bruce D Levy

National Institute of General Medical Sciences (GM134949)

  • Ilya Levental

National Institute of General Medical Sciences (GM124072)

  • Ilya Levental

Howard Hughes Medical Institute

  • Clifford P Brangwynne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. William A Prinz, National Institutes of Health, United States

Ethics

Human subjects: Human pathology studies were performed with the approval of the Institutional Review Board at Brigham and Women's Hospital. Clinical autopsies with full anatomic dissection were performed on SARS-CoV-2 decedents by a board-certified anatomic pathologist (RFP) with appropriateinfectious precautions.

Version history

  1. Received: December 21, 2020
  2. Accepted: April 1, 2021
  3. Accepted Manuscript published: April 23, 2021 (version 1)
  4. Version of Record published: May 7, 2021 (version 2)

Copyright

© 2021, Sanders et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 18,345
    views
  • 1,689
    downloads
  • 154
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David W Sanders
  2. Chanelle C Jumper
  3. Paul J Ackerman
  4. Dan Bracha
  5. Anita Donlic
  6. Hahn Kim
  7. Devin Kenney
  8. Ivan Castello-Serrano
  9. Saori Suzuki
  10. Tomokazu Tamura
  11. Alexander H Tavares
  12. Mohsan Saeed
  13. Alex S Holehouse
  14. Alexander Ploss
  15. Ilya Levental
  16. Florian Douam
  17. Robert F Padera
  18. Bruce D Levy
  19. Clifford P Brangwynne
(2021)
SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation
eLife 10:e65962.
https://doi.org/10.7554/eLife.65962

Share this article

https://doi.org/10.7554/eLife.65962

Further reading

    1. Cell Biology
    Gang Liu, Yunxuan Hou ... Xiumei Jiang
    Research Article

    Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron–sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron–sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.