TRPM7 is critical for short-term synaptic depression by regulating synaptic vesicle endocytosis

Abstract

TRPM7 contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in CNS neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmission from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Zhong-Jiao Jiang

    Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Wenping Li

    Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Li-Hua Yao

    Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Badeia Saed

    Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yan Rao

    Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brian S Grewe

    Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8287-6588
  7. Andrea McGinley

    Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kelly Varga

    Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Simon Alford

    Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ying S Hu

    University of Illinois at Chicago, Chicgo, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Liang-Wei Gong

    Biological Sciences, University of Illinois at Chicago, Chicago, United States
    For correspondence
    lwgong@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5868-6039

Funding

NIH Office of the Director (R01NS110533)

  • Liang-Wei Gong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nils Brose, Max Planck Institute of Experimental Medicine, Germany

Ethics

Animal experimentation: All animal experimental studies were approved by the Animal Care and Use Committee of the University of Illinois at Chicago and conformed to the guidelines of the National Institutes of Health.(animal protocol number 19-189).

Version history

  1. Received: January 20, 2021
  2. Preprint posted: January 25, 2021 (view preprint)
  3. Accepted: September 10, 2021
  4. Accepted Manuscript published: September 27, 2021 (version 1)
  5. Version of Record published: October 14, 2021 (version 2)

Copyright

© 2021, Jiang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,426
    views
  • 256
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhong-Jiao Jiang
  2. Wenping Li
  3. Li-Hua Yao
  4. Badeia Saed
  5. Yan Rao
  6. Brian S Grewe
  7. Andrea McGinley
  8. Kelly Varga
  9. Simon Alford
  10. Ying S Hu
  11. Liang-Wei Gong
(2021)
TRPM7 is critical for short-term synaptic depression by regulating synaptic vesicle endocytosis
eLife 10:e66709.
https://doi.org/10.7554/eLife.66709

Share this article

https://doi.org/10.7554/eLife.66709

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.