Abstract

Human serum albumin (HSA) is the frontline antioxidant protein in blood with established anti-inflammatory and anticoagulation functions. Here we report that COVID-19-induced oxidative stress inflicts structural damages to HSA and is linked with mortality outcome in critically ill patients. We recruited 39 patients who were followed up for a median of 12.5 days (1-35 days), among them 23 had died. Analyzing blood samples from patients and healthy individuals (n=11), we provide evidence that neutrophils are major sources of oxidative stress in blood and that hydrogen peroxide is highly accumulated in plasmas of non-survivors. We then analyzed electron paramagnetic resonance (EPR) spectra of spin labelled fatty acids (SLFA) bound with HSA in whole blood of control, survivor, and non-survivor subjects (n=10-11). Non-survivor' HSA showed dramatically reduced protein packing order parameter, faster SLFA correlational rotational time, and smaller S/W ratio (strong-binding/weak-binding sites within HSA), all reflecting remarkably fluid protein microenvironments. Following loading/unloading of 16-DSA we show that transport function of HSA maybe impaired in severe patients. Stratified at the means, Kaplan–Meier survival analysis indicated that lower values of S/W ratio and accumulated H2O2 in plasma significantly predicted in-hospital mortality (S/W≤0.15, 81.8% (18/22) vs. S/W>0.15, 18.2% (4/22), p=0.023; plasma [H2O2]>8.6 mM, 65.2% (15/23) vs. 34.8% (8/23), p=0.043). When we combined these two parameters as the ratio ((S/W)/[H2O2]) to derive a risk score, the resultant risk score lower than the mean (< 0.019) predicted mortality with high fidelity (95.5% (21/22) vs. 4.5% (1/22), logrank c2 = 12.1, p=4.9x10-4). The derived parameters may provide a surrogate marker to assess new candidates for COVID-19 treatments targeting HSA replacements and/or oxidative stress.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Raw data collected and used to produce all figures and tables are available on Dyrad (https://doi.org/10.5061/dryad.cnp5hqc4q).

The following data sets were generated

Article and author information

Author details

  1. Mohamed A Badawy

    Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1691-0167
  2. Basma A Yasseen

    Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  3. Riem M El-Messiery

    Faculty of Medicine, Cairo University, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  4. Engy A Abdel-Rahman

    Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  5. Aya A Elkhodiry

    Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5684-0242
  6. Azza G Kamel

    Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  7. Hajar El-sayed

    Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  8. Asmaa M Shedra

    Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  9. Rehab Hamdy

    Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  10. Mona Zidan

    Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  11. Diaa Al-Raawi

    Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  12. Mahmoud Hammad

    Pediatric Oncology Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1677-0360
  13. Nahla Elsharkawy

    Clinical pathology department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  14. Mohamed El Ansary

    Department of Intensive Care, Faculty of Medicine, Cairo University, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  15. Ahmed Al-Halfawy

    Department of Pulmonary Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  16. Alaa Elhadad

    Pediatric Oncology Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  17. Ashraf Hatem

    Department of Chest Diseases, Faculty of Medicine, Cairo University, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  18. Sherif Abouelnaga

    Pediatric Oncology Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    Competing interests
    The authors declare that no competing interests exist.
  19. Laura L Dugan

    Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Sameh Saad Ali

    Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
    For correspondence
    sameh.ali@57357.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0339-6106

Funding

The Association of Friends of the National Cancer Institute (COVID-SA)

  • Sameh Saad Ali

The Children's Cancer Hospital Egypt (SA-Start up)

  • Sameh Saad Ali

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Evangelos J Giamarellos-Bourboulis, National and Kapodistrian University of Athens, Medical School, Greece

Ethics

Human subjects: Written informed consents were obtained from participants in accordance with the principles of the Declaration of Helsinki. For COVID-19 and control blood/plasma collection, Children's Cancer Hospital's Institutional Review Board (IRB) has evaluated the study design and protocol, IRB number 31-2020 issued on July 6, 2020.

Version history

  1. Preprint posted: April 7, 2021 (view preprint)
  2. Received: April 14, 2021
  3. Accepted: November 24, 2021
  4. Accepted Manuscript published: November 25, 2021 (version 1)
  5. Version of Record published: December 3, 2021 (version 2)

Copyright

© 2021, Badawy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,691
    views
  • 196
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohamed A Badawy
  2. Basma A Yasseen
  3. Riem M El-Messiery
  4. Engy A Abdel-Rahman
  5. Aya A Elkhodiry
  6. Azza G Kamel
  7. Hajar El-sayed
  8. Asmaa M Shedra
  9. Rehab Hamdy
  10. Mona Zidan
  11. Diaa Al-Raawi
  12. Mahmoud Hammad
  13. Nahla Elsharkawy
  14. Mohamed El Ansary
  15. Ahmed Al-Halfawy
  16. Alaa Elhadad
  17. Ashraf Hatem
  18. Sherif Abouelnaga
  19. Laura L Dugan
  20. Sameh Saad Ali
(2021)
Neutrophil-mediated oxidative stress and albumin structural damage predict COVID-19-associated mortality
eLife 10:e69417.
https://doi.org/10.7554/eLife.69417

Share this article

https://doi.org/10.7554/eLife.69417

Further reading

    1. Immunology and Inflammation
    Phillip A Erice, Xinyan Huang ... Antony Rodriguez
    Research Article

    Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.

    1. Immunology and Inflammation
    Xiuyuan Lu, Hiroki Hayashi ... Sho Yamasaki
    Research Article

    SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αβ sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as ‘sustainers’), but not in ‘decliners’. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.