Evolutionary conservation of centriole rotational asymmetry in the human centrosome

  1. Noémie Gaudin
  2. Paula Martin Gil
  3. Meriem Boumendjel
  4. Dmitry Ershov
  5. Catherine Pioche-Durieu
  6. Manon Bouix
  7. Quentin Delobelle
  8. Lucia Maniscalco
  9. Than Bich Ngan Phan
  10. Vincent Heyer
  11. Bernardo Reina-San-Martin
  12. Juliette Azimzadeh  Is a corresponding author
  1. Institut Jacques Monod, France
  2. Institut Pasteur, USR 3756 CNRS, France
  3. Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), France

Abstract

Centrioles are formed by microtubule triplets in a nine-fold symmetric arrangement. In flagellated protists and in animal multiciliated cells, accessory structures tethered to specific triplets render the centrioles rotationally asymmetric, a property that is key to cytoskeletal and cellular organization in these contexts. In contrast, centrioles within the centrosome of animal cells display no conspicuous rotational asymmetry. Here, we uncover rotationally asymmetric molecular features in human centrioles. Using ultrastructure expansion microscopy, we show that LRRCC1, the ortholog of a protein originally characterized in flagellate green algae, associates preferentially to two consecutive triplets in the distal lumen of human centrioles. LRRCC1 partially co-localizes and affects the recruitment of another distal component, C2CD3, which also has an asymmetric localization pattern in the centriole lumen. Together, LRRCC1 and C2CD3 delineate a structure reminiscent of a filamentous density observed by electron microscopy in flagellates, termed the 'acorn'. Functionally, the depletion of LRRCC1 in human cells induced defects in centriole structure, ciliary assembly and ciliary signaling, supporting that LRRCC1 cooperates with C2CD3 to organizing the distal region of centrioles. Since a mutation in the LRRCC1 gene has been identified in Joubert syndrome patients, this finding is relevant in the context of human ciliopathies. Taken together, our results demonstrate that rotational asymmetry is an ancient property of centrioles that is broadly conserved in human cells. Our work also reveals that asymmetrically localized proteins are key for primary ciliogenesis and ciliary signaling in human cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files are available from the Dryad database (doi:10.5061/dryad.95x69p8m5).

The following data sets were generated

Article and author information

Author details

  1. Noémie Gaudin

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Paula Martin Gil

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Meriem Boumendjel

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Dmitry Ershov

    Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, France, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Pioche-Durieu

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0988-1169
  6. Manon Bouix

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Quentin Delobelle

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Lucia Maniscalco

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Than Bich Ngan Phan

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Vincent Heyer

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Bernardo Reina-San-Martin

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Juliette Azimzadeh

    Institut Jacques Monod, Paris, France
    For correspondence
    juliette.azimzadeh@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7292-9973

Funding

Agence Nationale de la Recherche (ANR-21-CE13-008)

  • Juliette Azimzadeh

Fondation pour la Recherche Médicale (Graduate Student Fellowship)

  • Noémie Gaudin

Fondation ARC pour la Recherche sur le Cancer (Dotation)

  • Juliette Azimzadeh

Ligue Contre le Cancer (Dotation)

  • Juliette Azimzadeh

Labex Who Am I?

  • Juliette Azimzadeh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jens Lüders, Institute for Research in Biomedicine, Spain

Version history

  1. Received: July 21, 2021
  2. Preprint posted: July 22, 2021 (view preprint)
  3. Accepted: March 22, 2022
  4. Accepted Manuscript published: March 23, 2022 (version 1)
  5. Version of Record published: April 5, 2022 (version 2)

Copyright

© 2022, Gaudin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,659
    views
  • 390
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noémie Gaudin
  2. Paula Martin Gil
  3. Meriem Boumendjel
  4. Dmitry Ershov
  5. Catherine Pioche-Durieu
  6. Manon Bouix
  7. Quentin Delobelle
  8. Lucia Maniscalco
  9. Than Bich Ngan Phan
  10. Vincent Heyer
  11. Bernardo Reina-San-Martin
  12. Juliette Azimzadeh
(2022)
Evolutionary conservation of centriole rotational asymmetry in the human centrosome
eLife 11:e72382.
https://doi.org/10.7554/eLife.72382

Share this article

https://doi.org/10.7554/eLife.72382

Further reading

    1. Cell Biology
    Yoko Nakai-Futatsugi, Jianshi Jin ... Masayo Takahashi
    Research Article

    Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signaling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor-1. Overall, we implicate CYRI-B as a mediator of growth and signaling in pancreatic cancer, providing new insights into pathways controlling metastasis.