Structure-guided glyco-engineering of ACE2 for improved potency as soluble SARS-CoV-2 decoy receptor

  1. Tümay Capraz
  2. Nikolaus Ferdinand Kienzl
  3. Elisabeth Laurent
  4. Jan W Perthold
  5. Esther Föderl-Höbenreich
  6. Clemens Grünwald-Gruber
  7. Daniel Maresch
  8. Vanessa Monteil
  9. Janine Niederhöfer
  10. Gerald Wirnsberger
  11. Ali Mirazimi
  12. Kurt Zatloukal
  13. Lukas Mach  Is a corresponding author
  14. Josef M Penninger  Is a corresponding author
  15. Chris Oostenbrink  Is a corresponding author
  16. Johannes Stadlmann  Is a corresponding author
  1. University of Natural Resources and Life Sciences, Austria
  2. Medical University of Graz, Austria
  3. Karolinska Institute, Sweden
  4. Apeiron Biologics AG, Austria
  5. Austrian Academy of Sciences, Austria

Abstract

Infection and viral entry of SARS-CoV-2 crucially depends on the binding of its Spike protein to angiotensin converting enzyme 2 (ACE2) presented on host cells. Glycosylation of both proteins is critical for this interaction. Recombinant soluble human ACE2 can neutralize SARS-CoV-2 and is currently undergoing clinical tests for the treatment of COVID-19. We used 3D structural models and molecular dynamics simulations to define the ACE2 N-glycans that critically influence Spike-ACE2 complex formation. Engineering of ACE2 N-glycosylation by site-directed mutagenesis or glycosidase treatment resulted in enhanced binding affinities and improved virus neutralization without notable deleterious effects on the structural stability and catalytic activity of the protein. Importantly, simultaneous removal of all accessible N-glycans from recombinant soluble human ACE2 yields a superior SARS-CoV-2 decoy receptor with promise as effective treatment for COVID-19 patients.

Data availability

Molecular models and simulation trajectories are available through the BioExcel COVID-19 Molecular Structure and Therapeutics Hub (https://covid.bioexcel.eu/simulations/).

The following data sets were generated

Article and author information

Author details

  1. Tümay Capraz

    Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  2. Nikolaus Ferdinand Kienzl

    nstitute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8057-3930
  3. Elisabeth Laurent

    BOKU Core Facility Biomolecular and Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5234-5524
  4. Jan W Perthold

    Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  5. Esther Föderl-Höbenreich

    Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
  6. Clemens Grünwald-Gruber

    Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  7. Daniel Maresch

    Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Vanessa Monteil

    Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2652-5695
  9. Janine Niederhöfer

    Apeiron Biologics AG, Vienna, Austria
    Competing interests
    Janine Niederhöfer, employee of Apeiron Biologics. Apeiron holds a patent on the use of ACE2 for the treatment of lung, heart, or kidney injury and applied for a patent to treat COVID-19 with rshACE2..
  10. Gerald Wirnsberger

    Apeiron Biologics AG, Vienna, Austria
    Competing interests
    Gerald Wirnsberger, employee of Apeiron Biologics. Apeiron holds a patent on the use of ACE2 for the treatment of lung, heart, or kidney injury and applied for a patent to treat COVID-19 with rshACE2..
  11. Ali Mirazimi

    Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  12. Kurt Zatloukal

    Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5299-7218
  13. Lukas Mach

    Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
    For correspondence
    lukas.mach@boku.ac.at
    Competing interests
    No competing interests declared.
  14. Josef M Penninger

    Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
    For correspondence
    josef.penninger@ubc.ca
    Competing interests
    Josef M Penninger, declares a conflict of interest as a founder, supervisory board member, and shareholder of Apeiron Biologics. Apeiron holds a patent on the use of ACE2 for the treatment of lung, heart, or kidney injury and applied for a patent to treat COVID-19 with rshACE2..
  15. Chris Oostenbrink

    Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
    For correspondence
    chris.oostenbrink@boku.ac.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4232-2556
  16. Johannes Stadlmann

    Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
    For correspondence
    j.stadlmann@boku.ac.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5693-6690

Funding

Austrian Science Fund (W1224-B09)

  • Nikolaus Ferdinand Kienzl
  • Daniel Maresch
  • Lukas Mach
  • Chris Oostenbrink

Vienna Science and Technology Fund (COV20-015)

  • Tümay Capraz
  • Chris Oostenbrink

Innovative Medicines Initiative 2 Joint Undertaking (101005026)

  • Vanessa Monteil
  • Ali Mirazimi
  • Josef M Penninger

DOC fellowship of the Academy of Sciences (24987)

  • Jan W Perthold

T. von Zastrow foundation

  • Josef M Penninger
  • Johannes Stadlmann

Austrian Science Fund (Z271-B19)

  • Josef M Penninger
  • Johannes Stadlmann

Canada Research Chairs (F18-0133)

  • Josef M Penninger

Canadian Institutes of Health Research (F20-02343)

  • Josef M Penninger

Canadian Institutes of Health Research (F20-02015)

  • Josef M Penninger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sara L Sawyer, University of Colorado Boulder, United States

Version history

  1. Preprint posted: August 31, 2021 (view preprint)
  2. Received: September 6, 2021
  3. Accepted: December 17, 2021
  4. Accepted Manuscript published: December 20, 2021 (version 1)
  5. Version of Record published: January 5, 2022 (version 2)

Copyright

© 2021, Capraz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,713
    views
  • 270
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tümay Capraz
  2. Nikolaus Ferdinand Kienzl
  3. Elisabeth Laurent
  4. Jan W Perthold
  5. Esther Föderl-Höbenreich
  6. Clemens Grünwald-Gruber
  7. Daniel Maresch
  8. Vanessa Monteil
  9. Janine Niederhöfer
  10. Gerald Wirnsberger
  11. Ali Mirazimi
  12. Kurt Zatloukal
  13. Lukas Mach
  14. Josef M Penninger
  15. Chris Oostenbrink
  16. Johannes Stadlmann
(2021)
Structure-guided glyco-engineering of ACE2 for improved potency as soluble SARS-CoV-2 decoy receptor
eLife 10:e73641.
https://doi.org/10.7554/eLife.73641

Share this article

https://doi.org/10.7554/eLife.73641

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.