Modelling the response to vaccine in non-human primates to define SARS-CoV-2 mechanistic correlates of protection

  1. Marie Alexandre
  2. Romain Marlin
  3. Mélanie Prague
  4. Severin Coleon
  5. Nidhal Kahlaoui
  6. Sylvain Cardinaud
  7. Thibaut Naninck
  8. Benoit Delache
  9. Mathieu Surenaud
  10. Mathilde Galhaut
  11. Nathalie Dereuddre-Bosquet
  12. Mariangela Cavarelli
  13. Pauline Maisonnasse
  14. Mireille Centlivre
  15. Christine Lacabaratz
  16. Aurelie Wiedemann
  17. Sandra Zurawski
  18. Gerard Zurawski
  19. Olivier Schwartz
  20. Rogier W Sanders
  21. Roger Le Grand
  22. Yves Levy
  23. Rodolphe Thiébaut  Is a corresponding author
  1. University of Bordeaux, Inria SISTM, UMR 1219, France
  2. Université Paris-Saclay, Inserm, CEA, France
  3. Vaccine Research Institute, Inserm U955, France
  4. Baylor Scott and White Research Institute, United States
  5. Institut Pasteur, France
  6. University of Amsterdam, Netherlands

Abstract

The definition of correlates of protection is critical for the development of next generation SARS-CoV-2 vaccine platforms. Here, we propose a model-based approach for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication.

Data availability

No unique reagents were generated for this study.Data that support the findings of this study are provided in the source data files of this paper and gather data from 1) the study [Marlin, Nature Com 2021] used in this analysis, which are also directly available online in the section Source data of this related paper (https://www.nature.com/articles/s41467-021-25382-0#Sec17) ; 2) the study [Brouwer, Cell 2021] used in this analysis, which are also available from the corresponding authors of the related paper and 3) the study [Corbett, NEJM 2020] used in this analysis, which are also available online in the section Supplementary Material of the related paper, excel file labelled ("Supplementary Appendix 2"). Data from the main study [Marlin, Nature Com 2021] can also be found in the open-access repository Dryad using the following DOI: https://doi.org/10.5061/dryad.1zcrjdfv7.The original code (mlxtran models and R) as well as model definition files including the full list of parameters used are available and free-of-cost on github (Inria SISTM Team) at the following link: https://github.com/sistm/SARSCoV2modelingNHP.

Article and author information

Author details

  1. Marie Alexandre

    Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3557-7075
  2. Romain Marlin

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Mélanie Prague

    Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Severin Coleon

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Nidhal Kahlaoui

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Sylvain Cardinaud

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Thibaut Naninck

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Benoit Delache

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Mathieu Surenaud

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Mathilde Galhaut

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Nathalie Dereuddre-Bosquet

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Mariangela Cavarelli

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Pauline Maisonnasse

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0555-207X
  14. Mireille Centlivre

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Christine Lacabaratz

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Aurelie Wiedemann

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Sandra Zurawski

    Baylor Scott and White Research Institute, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Gerard Zurawski

    Baylor Scott and White Research Institute, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Olivier Schwartz

    Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0729-1475
  20. Rogier W Sanders

    Department of Medical Microbiology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  21. Roger Le Grand

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4928-4484
  22. Yves Levy

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  23. Rodolphe Thiébaut

    Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
    For correspondence
    rodolphe.thiebaut@u-bordeaux.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5235-3962

Funding

Agence Nationale de la Recherche (ANR-10-LABX-77-01)

  • Yves Levy
  • Rodolphe Thiébaut

Agence Nationale de la Recherche (ANR-11- 1018 INBS-0008)

  • Roger Le Grand

This work was supported by INSERM and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR under reference ANR-10-LABX-77-01. MA has been funded by INRIA PhD grant. The Infectious Disease Models and Innovative Therapies (IDMIT) research infrastructure is supported by the Programme Investissements d'Avenir"

Reviewing Editor

  1. Frederik Graw, Heidelberg University, Germany

Ethics

Animal experimentation: Cynomolgus macaques (Macaca fascicularis), aged 37-66 months (18 females and 13 males) and originating from Mauritian AAALAC certified breeding centers were used in this study. All animals were housed in IDMIT facilities (CEA, Fontenay-aux-roses), under BSL2 and BSL-3 containment when necessary (Animal facility authorization #D92-032-02, Préfecture des Hauts de Seine, France) and in compliance with European Directive 2010/63/EU, the French regulations and the Standards for Human Care and Use of Laboratory Animals, of the Office for Laboratory Animal Welfare (OLAW, assurance number #A5826-01, US). The protocols were approved by the institutional ethical committee "Comité d'Ethique en Expérimentation Animale du Commissariat à l'Energie Atomique et aux Energies Alternatives" (CEtEA #44) under statement number A20-011. The study was authorized by the "Research, Innovation and Education Ministry" under registration number APAFIS#24434-2020030216532863v1.

Version history

  1. Preprint posted: November 1, 2021 (view preprint)
  2. Received: November 9, 2021
  3. Accepted: June 22, 2022
  4. Accepted Manuscript published: July 8, 2022 (version 1)
  5. Version of Record published: July 14, 2022 (version 2)

Copyright

© 2022, Alexandre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,026
    views
  • 278
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marie Alexandre
  2. Romain Marlin
  3. Mélanie Prague
  4. Severin Coleon
  5. Nidhal Kahlaoui
  6. Sylvain Cardinaud
  7. Thibaut Naninck
  8. Benoit Delache
  9. Mathieu Surenaud
  10. Mathilde Galhaut
  11. Nathalie Dereuddre-Bosquet
  12. Mariangela Cavarelli
  13. Pauline Maisonnasse
  14. Mireille Centlivre
  15. Christine Lacabaratz
  16. Aurelie Wiedemann
  17. Sandra Zurawski
  18. Gerard Zurawski
  19. Olivier Schwartz
  20. Rogier W Sanders
  21. Roger Le Grand
  22. Yves Levy
  23. Rodolphe Thiébaut
(2022)
Modelling the response to vaccine in non-human primates to define SARS-CoV-2 mechanistic correlates of protection
eLife 11:e75427.
https://doi.org/10.7554/eLife.75427

Share this article

https://doi.org/10.7554/eLife.75427

Further reading

    1. Immunology and Inflammation
    Phillip A Erice, Xinyan Huang ... Antony Rodriguez
    Research Article

    Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.

    1. Immunology and Inflammation
    Xiuyuan Lu, Hiroki Hayashi ... Sho Yamasaki
    Research Article

    SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αβ sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as ‘sustainers’), but not in ‘decliners’. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.