1. Hugh D Piggins   Is a corresponding author
  2. David A Bechtold   Is a corresponding author
  1. University of Manchester, United Kingdom

All forms of life have to be able to cope with changes in their environment, including daily cycles in temperature and light levels. As a result, organisms as diverse as bacteria and humans have evolved inbuilt timekeeping mechanisms that are capable of tracking the 24-hour day.

These so-called ‘circadian’ clocks enable organisms to anticipate changes that take place in their environment, and adapt their biology accordingly. In addition to tracking time, biological clocks must stay synchronized (or entrained) with the world around them. To achieve this, circadian clocks can be influenced or reset by environmental factors called ‘zeitgebers’ (from the German for ‘time-giver’). The daily cycle of light and dark is a dominant zeitgeber for most organisms, while periodic food availability represents another powerful zeitgeber. Now, in eLife, Henrik Oster and colleagues—including Dominic Landgraf and Anthony Tsang as joint first authors—report how a hormone released from the gut after eating can help the body to track changes in mealtimes (Landgraf et al., 2015).

Circadian clocks have a profound impact on mammalian biology, and virtually all aspects of our lives—from sleep-wake cycles to patterns of hormone release and energy metabolism—follow pronounced daily rhythms (Albrecht, 2012). In mammals, it is well established that the suprachiasmatic nucleus (or SCN) contains the body's master clock. Located in the brain, just above the optic nerves, the SCN clock receives information about environmental light levels directly from the eyes, which keeps it in sync with the external world.

Twenty years of research into circadian clockwork mean that we understand relatively well how changes in light adjust the timing of the SCN clock. The expression of specific ‘clock genes’, such as Per1 and Per2, within neurons of the SCN is increased in response to light. This means that the SCN clock can be advanced or delayed to ensure it remains in time with the prevailing light–dark cycle. However, it has also become clear that there are other circadian clocks in most of the cells and tissues in the body (Guilding and Piggins, 2007; Mohawk et al., 2012).

Under normal circumstances, this network of clocks is kept in synchrony by the master clock in the SCN; but it has been known for many decades that behavioural rhythms in laboratory rodents can be entrained by restricting access to food to certain times of the day. These food-entrained rhythms are not affected by the light–dark cycle, and they can persist in animals that have had their SCN destroyed. A set mealtime is now known to be a dominant zeitgeber for these peripheral tissue clocks (such as the clock in the liver), with the expression of the clock genes in these tissues become aligned to feeding time (Damiola et al., 2000). In contrast, the SCN clock remains locked to the light–dark cycle. It makes sense for tissue-specific clocks to be sensitive to food instead of light because the availability of food in nature may not always coincide with other environmental factors.

Unlike modulation of the SCN clock by light, it is unclear which signals convey information about feeding time to reset the circadian clock in the liver. Oster, Landgraf, Tsang and colleagues—who are based at the Max Planck Institute for Biophysical Chemistry, and the Universities of Lübeck and Toronto—report that a gut hormone called oxyntomodulin is one of these signals. Oxyntomodulin is a peptide hormone that is released from the gut in response to food intake, and has been suggested to be a potential drug target to combat obesity in humans (Druce and Bloom, 2006).

Landgraf, Tsang et al. started by screening around 200 peptide molecules that are known to be involved in appetite and the regulation of body weight to see if any could adjust the molecular clock of liver tissue. This in vitro screen identified two molecules: oxyntomodulin and glucagon. In particular, treatment with oxyntomodulin could shift the liver clock by several hours, either forward or back, depending on the time it was administered. Both of these characteristics suggest that oxyntomodulin serves to set the liver clock to feeding rhythms in living organisms.

So how does oxyntomodulin reset the liver clock? Somewhat unusually, this hormone can bind to two different types of receptor protein (namely GLP-1 receptors and glucagon receptors; Pocai, 2013). Further experiments confirmed that oxyntomodulin's liver resetting activity depends on it stimulating glucagon receptors (and not GLP-1 receptors). This stimulation leads to a transient increase in the expression of the Per1 clock gene in the liver cells, which involves a signalling cascade that is reminiscent of the light-induced responses of the SCN (Tischkau et al., 2003).

Mice that were given oxyntomodulin when they would normally be resting showed an increase in Per expression in the liver, and experienced a shift in the timing of their liver clock. Treatment with oxyntomodulin also delayed and/or reduced the expression of genes involved in carbohydrate metabolism. However, treating the mice with oxyntomodulin during the period when they were normally active had no effect on the liver. Thus, oxyntomodulin's effects on the liver clock only occur at times of the daily cycle when the mice do not typically eat. Furthermore, oxyntomodulin had no effect the SCN master clock.

These experiments only demonstrate that artificially elevated levels of oxyntomodulin alter liver activity, so Landgraf, Tsang et al. then explored whether a mouse's normal levels of oxyntomodulin act to regulate its liver clock. When fasted animals were then given the opportunity to eat, oxyntomodulin levels in the blood increased within 20 minutes, and remained high for one hour. This signal was enough to alter clock gene activity in the liver. Landgraf, Tsang et al. then treated mice with antibodies that bind to oxyntomodulin. This treatment neutralized the hormone circulating in the body, and prevented its action, which weakened the resetting of the liver clock following food intake.

Landgraf, Tsang et al. suggest that the oxynto-modulin released by the gut following a meal serves as a timing cue for the liver clock. When food intake occurs at the expected times of day, the liver clock is relatively blind to this signal. However, when a meal occurs outside of a normal feeding time, the induced rise in oxyntomodulin serves to adjust the clock to a new feeding schedule. In this way, oxyntomodulin may function as an important signal that translates feeding time into the timing of an internal clock.

It will be important to examine oxyntomodulin signalling in situations were food is limited, and to explore whether it can also shift the clocks in other peripheral tissues, such as muscles and the pancreas. Furthermore, the therapeutic potential of this peptide hormone in correcting problems associated with ‘jet-lag’ and rapid travel through multiple time zones also awaits investigation.

References

    1. Guilding C
    2. Piggins HD
    (2007)
    Challenging the omnipotence of the suprachiasmatic circadian timekeeper: are circadian oscillators present throughout the mammalian brain?
    European Journal of Neuroscience 25:229–255.

Article and author information

Author details

  1. Hugh D Piggins

    Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    For correspondence
    hugh.d.piggins@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. David A Bechtold

    Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    For correspondence
    david.bechtold@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published: May 27, 2015 (version 1)

Copyright

© 2015, Piggins and Bechtold

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,110
    Page views
  • 182
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hugh D Piggins
  2. David A Bechtold
(2015)
Circadian Rhythms: Feeding time
eLife 4:e08166.
https://doi.org/10.7554/eLife.08166
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Dietmar Funck, Malte Sinn ... Jörg S Hartig
    Research Article

    Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.