Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling

  1. Claudio A Franco
  2. Martin L Jones
  3. Miguel O Bernabeu
  4. Anne-Clemence Vion
  5. Pedro Barbacena
  6. Jieqing Fan
  7. Thomas Mathivet
  8. Catarina G Fonseca
  9. Anan Ragab
  10. Terry P Yamaguchi
  11. Peter V Coveney
  12. Richard A Lang
  13. Holger Gerhardt  Is a corresponding author
  1. London Research Institute, United Kingdom
  2. The University of Edinburgh, United Kingdom
  3. Faculdade de Medicina Universidade de Lisboa, Portugal
  4. Cincinnati Children's Hospital Medical Center, United States
  5. Vesalius Research Center, Belgium
  6. National Institutes of Health, United States
  7. University College London, United Kingdom

Abstract

Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

Article and author information

Author details

  1. Claudio A Franco

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Martin L Jones

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Miguel O Bernabeu

    Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne-Clemence Vion

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Pedro Barbacena

    Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Jieqing Fan

    The Visual Systems Group, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Mathivet

    Vascular Patterning Laboratory, Vesalius Research Center, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Catarina G Fonseca

    Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  9. Anan Ragab

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Terry P Yamaguchi

    Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter V Coveney

    Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Richard A Lang

    The Visual Systems Group, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Holger Gerhardt

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    For correspondence
    holger.gerhardt@mdc-berlin.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal procedures were performed in accordance with the United Kingdom Home Office Animal Act 1986 under the authority of project license PPL 80/2391.

Copyright

© 2016, Franco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,617
    views
  • 1,383
    downloads
  • 118
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claudio A Franco
  2. Martin L Jones
  3. Miguel O Bernabeu
  4. Anne-Clemence Vion
  5. Pedro Barbacena
  6. Jieqing Fan
  7. Thomas Mathivet
  8. Catarina G Fonseca
  9. Anan Ragab
  10. Terry P Yamaguchi
  11. Peter V Coveney
  12. Richard A Lang
  13. Holger Gerhardt
(2016)
Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling
eLife 5:e07727.
https://doi.org/10.7554/eLife.07727

Share this article

https://doi.org/10.7554/eLife.07727

Further reading

    1. Cell Biology
    Jessica Y Chotiner, N Adrian Leu ... P Jeremy Wang
    Research Article

    Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. Mouse TRIP13 and its ortholog Pch2 are instrumental in remodeling HORMA domain proteins. HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed homologs. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These major phenotypes are consistent with reported phenotypes of Trip13 hypomorph alleles. Trip13 heterozygous mice exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. Terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon synapsis in diverse organisms.

    1. Cell Biology
    Johanna Odenwald, Bernardo Gabiatti ... Susanne Kramer
    Research Article

    Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an ‘all in one’ solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.