The Rqc2/Tae2 subunit of the Ribosome-Associated Quality Control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation

  1. Ryo Yonashiro
  2. Erich B Tahara
  3. Mario H Bengtson
  4. Maria Khokhrina
  5. Holger Lorenz
  6. Kai-Chun Chen
  7. Yu Kigoshi-Tansho
  8. Jeffrey N Savas
  9. John R Yates
  10. Steve A Kay
  11. Elizabeth A Craig
  12. Axel Mogk
  13. Bernd Bukau
  14. Claudio AP Joazeiro  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. University of São Paulo, Brazil
  3. University of Campinas, Brazil
  4. Zentrum für Molekulare Biologie der Universität Heidelberg, Germany
  5. Northwestern University, United States
  6. University of Wisconsin - Madison, United States

Abstract

Ribosome stalling during translation can be harmful, and is surveyed by a conserved quality control pathway that targets the associated mRNA and nascent polypeptide chain (NC). In this pathway, the ribosome-associated quality control (RQC) complex promotes the ubiquitylation and degradation of NCs remaining stalled in the 60S subunit. NC stalling is recognized by the Rqc2/Tae2 RQC subunit, which also stabilizes binding of the E3 ligase, Listerin/Ltn1. Additionally, Rqc2 modifies stalled NCs with a carboxy-terminal, Ala- and Thr-containing extension-the 'CAT tail.' However, the function of CAT tails and fate of CAT tail-modified ('CATylated') NCs has remained unknown. Here we show that CATylation mediates NC aggregation. NC CATylation and aggregation could be observed by inactivating Ltn1 or by analyzing NCs with limited ubiquitylation potential, suggesting that inefficient targeting by Ltn1 favors the Rqc2-mediated reaction. These findings uncover a translational stalling-dependent protein aggregation mechanism, and provide evidence that proteins can become marked for aggregation.

Article and author information

Author details

  1. Ryo Yonashiro

    Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erich B Tahara

    University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Mario H Bengtson

    University of Campinas, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Khokhrina

    Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Holger Lorenz

    Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kai-Chun Chen

    Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu Kigoshi-Tansho

    Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeffrey N Savas

    Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. John R Yates

    Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Steve A Kay

    Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Elizabeth A Craig

    Department of Biochemistry, University of Wisconsin - Madison, Wisconsin, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Axel Mogk

    Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Bernd Bukau

    Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Claudio AP Joazeiro

    Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
    For correspondence
    joazeiro@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Yonashiro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,708
    views
  • 1,552
    downloads
  • 128
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryo Yonashiro
  2. Erich B Tahara
  3. Mario H Bengtson
  4. Maria Khokhrina
  5. Holger Lorenz
  6. Kai-Chun Chen
  7. Yu Kigoshi-Tansho
  8. Jeffrey N Savas
  9. John R Yates
  10. Steve A Kay
  11. Elizabeth A Craig
  12. Axel Mogk
  13. Bernd Bukau
  14. Claudio AP Joazeiro
(2016)
The Rqc2/Tae2 subunit of the Ribosome-Associated Quality Control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation
eLife 5:e11794.
https://doi.org/10.7554/eLife.11794

Share this article

https://doi.org/10.7554/eLife.11794

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.