Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis

  1. Sandra Kümper  Is a corresponding author
  2. Faraz K Mardakheh
  3. Afshan McCarthy
  4. Maggie Yeo
  5. Gordon W Stamp
  6. Angela Paul
  7. Jonathan Worboys
  8. Amine Sadok
  9. Claus Jørgensen
  10. Sabrina Guichard
  11. Christopher J Marshall
  1. Institute of Cancer Research, United Kingdom
  2. Cancer Research UK London Research Institute, United Kingdom
  3. Cancer Research UK Manchester Institute, United Kingdom

Abstract

Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility.

Article and author information

Author details

  1. Sandra Kümper

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    For correspondence
    sandra.kuemper@icr.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Faraz K Mardakheh

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Afshan McCarthy

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Maggie Yeo

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Gordon W Stamp

    Experimental Pathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Angela Paul

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jonathan Worboys

    Cancer Research UK Manchester Institute, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Amine Sadok

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Claus Jørgensen

    Cancer Research UK Manchester Institute, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Sabrina Guichard

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher J Marshall

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal procedures were approved by the Animal Ethics Committee of the Institute of Cancer Research in accordance with National Home Office regulations under the Animals (Scientific Procedures) Act 1986. The date of approval of the current project license under which this work was carried out was the 07/09/13.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 7,971
    views
  • 1,708
    downloads
  • 124
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandra Kümper
  2. Faraz K Mardakheh
  3. Afshan McCarthy
  4. Maggie Yeo
  5. Gordon W Stamp
  6. Angela Paul
  7. Jonathan Worboys
  8. Amine Sadok
  9. Claus Jørgensen
  10. Sabrina Guichard
  11. Christopher J Marshall
(2016)
Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis
eLife 5:e12203.
https://doi.org/10.7554/eLife.12203

Share this article

https://doi.org/10.7554/eLife.12203

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.