RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells

  1. Jing-Ping Hsin
  2. Wencheng Li
  3. Mainul Hoque
  4. Bin Tian
  5. James L Manley  Is a corresponding author
  1. Columbia University, United States
  2. Rutgers University New Jersey Medical School, United States

Abstract

The RNA polymerase II largest subunit (Rpb1) contains a unique C-terminal domain (CTD) that plays multiple roles during transcription. The CTD is composed of consensus Y1S2P3T4S5P6S7 repeats, in which Ser, Thr and Tyr residues can all be phosphorylated. Here we report analysis of CTD Tyr1 using genetically tractable chicken DT40 cells. Cells expressing an Rpb1 derivative with all Tyr residues mutated to Phe (Rpb1-Y1F) were inviable. Remarkably, Rpb1-Y1F was unstable, degraded to a CTD-less form; however stability, but not cell viability, was fully rescued by restoration of a single C-terminal Tyr (Rpb1-25F+Y). Cytoplasmic and nucleoplasmic Rpb1 was phosphorylated exclusively on Tyr1, and phosphorylation specifically of Tyr1 prevented CTD degradation by the proteasome in vitro. Tyr1 phosphorylation was also detected on chromatin-associated, hyperphosphorylated Rpb1, consistent with a role in transcription. Indeed, we detected accumulation of upstream antisense (ua) RNAs in Rpb1-25F+Y cells, indicating a role for Tyr1 in uaRNA expression.

Article and author information

Author details

  1. Jing-Ping Hsin

    Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  2. Wencheng Li

    Rutgers University New Jersey Medical School, Newark, United States
    Competing interests
    No competing interests declared.
  3. Mainul Hoque

    Rutgers University New Jersey Medical School, Newark, United States
    Competing interests
    No competing interests declared.
  4. Bin Tian

    Rutgers University New Jersey Medical School, Newark, United States
    Competing interests
    No competing interests declared.
  5. James L Manley

    Columbia University, New York, United States
    For correspondence
    jlm2@columbia.edu
    Competing interests
    James L Manley, Senior Editor, eLife.

Reviewing Editor

  1. Danny Reinberg, HHMI / NYU School of Medicine, United States

Version history

  1. Received: December 18, 2013
  2. Accepted: May 6, 2014
  3. Accepted Manuscript published: May 8, 2014 (version 1)
  4. Version of Record published: June 3, 2014 (version 2)

Copyright

© 2014, Hsin et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,780
    views
  • 279
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jing-Ping Hsin
  2. Wencheng Li
  3. Mainul Hoque
  4. Bin Tian
  5. James L Manley
(2014)
RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells
eLife 3:e02112.
https://doi.org/10.7554/eLife.02112

Share this article

https://doi.org/10.7554/eLife.02112

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.