Recurrent turnover of senescent cells during regeneration of acomplex structure

  1. Maximina H Yun  Is a corresponding author
  2. Hongorzul Davaapil
  3. Jeremy P Brockes
  1. University College London, United Kingdom

Abstract

Cellular senescence has been recently linked to the promotion of age-related pathologies, including a decline in regenerative capacity. While such capacity deteriorates with age in mammals, it remains intact in species such as salamanders, which have an extensive repertoire of regeneration and can undergo multiple episodes through their lifespan. Here we show that, surprisingly, there is a significant induction of cellular senescence during salamander limb regeneration, but that rapid and effective mechanisms of senescent cell clearance operate in normal and regenerating tissues. Furthermore, the number of senescent cells does not increase upon repetitive amputation or ageing, in contrast to mammals. Finally, we identify the macrophage as a critical player in this efficient senescent cell clearance mechanism. We propose that effective immunosurveillance of senescent cells in salamanders supports their ability to undergo regeneration throughout their lifespan.

Article and author information

Author details

  1. Maximina H Yun

    Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
    For correspondence
    maximina.yun@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Hongorzul Davaapil

    Institute of Ophthalmology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeremy P Brockes

    Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Margaret Buckingham, Institut Pasteur, France

Ethics

Animal experimentation: All procedures for care and manipulation of adult newts (Notophthalmus viridescens) and axolotls (Ambystoma mexicanum) were performed in compliance with the Animals (Scientific Procedures) Act 1986, approved by the United Kingdom Home Office and University College London (Institutional License: 70-2716). All surgical procedures were carried out under anesthesia (0.1% Tricaine) followed by treatment with analgesics (Butorphanol tartrate). Every effort was made to minimise suffering.

Version history

  1. Received: November 6, 2014
  2. Accepted: May 3, 2015
  3. Accepted Manuscript published: May 5, 2015 (version 1)
  4. Version of Record published: May 18, 2015 (version 2)

Copyright

© 2015, Yun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,306
    views
  • 1,526
    downloads
  • 206
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maximina H Yun
  2. Hongorzul Davaapil
  3. Jeremy P Brockes
(2015)
Recurrent turnover of senescent cells during regeneration of acomplex structure
eLife 4:e05505.
https://doi.org/10.7554/eLife.05505

Share this article

https://doi.org/10.7554/eLife.05505

Further reading

    1. Cancer Biology
    2. Cell Biology
    Julian JA Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article Updated

    Collective cell migration is fundamental for the development of organisms and in the adult for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell–cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell–cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell–cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective SC migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased SC collective migration and increased clustering of SCs within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.