FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis

  1. Melissa Kelley
  2. John Yochem
  3. Michael Krieg
  4. Andrea Calixto
  5. Maxwell G Heiman
  6. Aleksandra Kuzmanov
  7. Vijaykumar Meli
  8. Martin Chalfie
  9. Miriam B Goodman
  10. Shai Shaham
  11. Alison Frand
  12. David S Fay  Is a corresponding author
  1. University of Wyoming, United States
  2. Stanford University, United States
  3. Columbia University, United States
  4. Boston Children's Hospital, United States
  5. University of California, United States
  6. Standford University, United States
  7. The Rockefeller University, United States

Abstract

During development, biomechanical forces contour the body and provide shape to internal organs. Using genetic and molecular approaches in combination with a FRET-based tension sensor, we characterized a pulling force exerted by the elongating pharynx (foregut) on the anterior epidermis during C. elegans embryogenesis. Resistance of the epidermis to this force and to actomyosin-based circumferential constricting forces is mediated by FBN-1, a ZP domain protein related to vertebrate fibrillins. fbn-1 was required specifically within the epidermis and FBN-1 was expressed in epidermal cells and secreted to the apical surface as a putative component of the embryonic sheath. Tiling array studies indicated that fbn-1 mRNA processing requires the conserved alternative splicing factor MEC-8/RBPMS. The conserved SYM-3/FAM102A and SYM-4/WDR44 proteins, which are linked to protein trafficking, function as additional components of this network. Our studies demonstrate the importance of the apical extracellular matrix in preventing mechanical deformation of the epidermis during development.

Article and author information

Author details

  1. Melissa Kelley

    Department of Molecular Biology, University of Wyoming, Laramie, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John Yochem

    Department of Molecular Biology, University of Wyoming, Laramie, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Krieg

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrea Calixto

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maxwell G Heiman

    Department of Genetics, Harvard Medical School, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Aleksandra Kuzmanov

    Department of Molecular Biology, University of Wyoming, Laramie, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Vijaykumar Meli

    Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Martin Chalfie

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Miriam B Goodman

    Department of Molecular and Cellular Physiology, Standford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shai Shaham

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Alison Frand

    Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. David S Fay

    Department of Molecular Biology, University of Wyoming, Laramie, United States
    For correspondence
    davidfay@uwyo.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Julie Ahringer, University of Cambridge, United Kingdom

Version history

  1. Received: January 19, 2015
  2. Accepted: March 20, 2015
  3. Accepted Manuscript published: March 23, 2015 (version 1)
  4. Version of Record published: April 14, 2015 (version 2)

Copyright

© 2015, Kelley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,982
    views
  • 619
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melissa Kelley
  2. John Yochem
  3. Michael Krieg
  4. Andrea Calixto
  5. Maxwell G Heiman
  6. Aleksandra Kuzmanov
  7. Vijaykumar Meli
  8. Martin Chalfie
  9. Miriam B Goodman
  10. Shai Shaham
  11. Alison Frand
  12. David S Fay
(2015)
FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis
eLife 4:e06565.
https://doi.org/10.7554/eLife.06565

Share this article

https://doi.org/10.7554/eLife.06565

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.