Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic α and β cells

  1. Laura Marroqui Esclapez
  2. Miguel Lopes
  3. Reinaldo S dos Santos
  4. Fabio A Grieco
  5. Merja Roivainen
  6. Sarah J Richardson
  7. Noel G Morgan
  8. Anne Op de beeck
  9. Decio L Eizirik  Is a corresponding author
  1. Universite Libre de Bruxelles, Belgium
  2. National Institute for Health and Welfare, Finland
  3. University of Exeter Medical School, United Kingdom

Abstract

Type 1 diabetes (T1D) is an autoimmune disease caused by loss of pancreatic β cells via apoptosis while neighbouring α cells are preserved. Viral infections by Coxsackieviruses (CVB) may contribute to trigger autoimmunity in T1D. Cellular permissiveness to viral infection is modulated by innate antiviral responses, which vary among different cell types. We presently describe that global gene expression is similar in cytokine-treated and virus-infected human islet cells, with up-regulation of gene networks involved in cell autonomous immune responses. Comparison between the responses of rat pancreatic α and β cells to infection by CVB5 and 4 indicate that α cells trigger a more efficient antiviral response than β cells, including higher basal and induced expression of STAT1-regulated genes, and are thus better able to clear viral infections than β cells. These differences may explain why pancreatic β cells, but not α cells, are targeted by an autoimmune response during T1D.

Article and author information

Author details

  1. Laura Marroqui Esclapez

    ULB Center for Diabetes Research, Medical Faculty, Universite Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Miguel Lopes

    ULB Center for Diabetes Research, Medical Faculty, Universite Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Reinaldo S dos Santos

    ULB Center for Diabetes Research, Medical Faculty, Universite Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabio A Grieco

    ULB Center for Diabetes Research, Medical Faculty, Universite Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Merja Roivainen

    National Institute for Health and Welfare, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah J Richardson

    Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Noel G Morgan

    Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Anne Op de beeck

    ULB Center for Diabetes Research, Medical Faculty, Universite Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Decio L Eizirik

    ULB Center for Diabetes Research, Medical Faculty, Universite Libre de Bruxelles, Brussels, Belgium
    For correspondence
    deizirik@ulb.ac.be
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mark McCarthy, Oxford University, United Kingdom

Ethics

Animal experimentation: Male Wistar rats (Charles River Laboratories, L'Arbresle Cedex, France) were housed and used according to the guidelines of the Belgian Regulations for Animal Care, with the approval by the local Ethical Committee (protocol number 465N; period of validity 07/2013-07/2017).

Human subjects: Human islets were isolated from 2 non-diabetic organ donors with approval from the local Ethical Committee in Pisa, Italy. Organ and tissue donation in Italy is regulated by the art. 23 of the national law n. 91, issued on April 1st, 1999; in Tuscany the regional transplant organization (OTT, Organizzazione Toscana Trapianti) allows that organs not suitable for clinical transplantation are used for research purposes provided informed consent has been signed by the responsible relative. Prof. Marchetti's group has access to donated pancreases for the preparation and study of isolated islets on the basis of approval by their local ethics committee, renewed in 2013.

Version history

  1. Received: February 14, 2015
  2. Accepted: June 8, 2015
  3. Accepted Manuscript published: June 10, 2015 (version 1)
  4. Version of Record published: June 25, 2015 (version 2)

Copyright

© 2015, Marroqui Esclapez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,939
    views
  • 355
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Marroqui Esclapez
  2. Miguel Lopes
  3. Reinaldo S dos Santos
  4. Fabio A Grieco
  5. Merja Roivainen
  6. Sarah J Richardson
  7. Noel G Morgan
  8. Anne Op de beeck
  9. Decio L Eizirik
(2015)
Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic α and β cells
eLife 4:e06990.
https://doi.org/10.7554/eLife.06990

Share this article

https://doi.org/10.7554/eLife.06990

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.