Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos

  1. Amanda D Yzaguirre
  2. Arun Padmanabhan
  3. Eric D de Groh
  4. Kurt A Engleka
  5. Jun Li
  6. Nancy A Speck
  7. Jonathan A Epstein  Is a corresponding author
  1. University of Pennsylvania, United States
  2. Harvard Medical School, United States
  3. Medpace Inc., United States

Abstract

Type I Neurofibromatosis (NF1) is caused by mutations in the NF1 gene encoding neurofibromin. Neurofibromin exhibits Ras GTPase activating protein (Ras-GAP) activity that is thought to mediate cellular functions relevant to disease phenotypes. Loss of murine Nf1 results in embryonic lethality due to heart defects, while mice with monoallelic loss of function mutations, or with tissue-specific inactivation have been used to model NF1. Here, we characterize previously unappreciated phenotypes in Nf1-/- embryos, which are inhibition of hemogenic endothelial specification in the dorsal aorta, enhanced yolk sac hematopoiesis, and exuberant cardiac blood island formation. We show that a missense mutation engineered into the active site of the Ras-GAP domain is sufficient to reproduce ectopic blood island formation, cardiac defects and overgrowth of neural crest-derived structures seen in Nf1-/- embryos. These findings demonstrate a role for Ras-GAP activity in suppressing hemogenic potential of the heart, and restricting growth of neural crest-derived tissues.

Article and author information

Author details

  1. Amanda D Yzaguirre

    Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Arun Padmanabhan

    Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric D de Groh

    Medpace Inc., Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kurt A Engleka

    Cardiovascular Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jun Li

    Cardiovascular Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nancy A Speck

    Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jonathan A Epstein

    Cardiovascular Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, University of Pennsylvania, Philadelphia, United States
    For correspondence
    epsteinj@upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Kevin Shannon, University of California, San Francisco, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations inthe Guide for the Care and Use of Laboratory Animals of the NationalInstitutes of Health. All of the animals were handled according toapproved institutional animal care and use committee (IACUC) protocols(#803789 and #803317) of the University of Pennsylvania.

Version history

  1. Received: March 30, 2015
  2. Accepted: October 12, 2015
  3. Accepted Manuscript published: October 13, 2015 (version 1)
  4. Version of Record published: December 8, 2015 (version 2)

Copyright

© 2015, Yzaguirre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,992
    views
  • 349
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amanda D Yzaguirre
  2. Arun Padmanabhan
  3. Eric D de Groh
  4. Kurt A Engleka
  5. Jun Li
  6. Nancy A Speck
  7. Jonathan A Epstein
(2015)
Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos
eLife 4:e07780.
https://doi.org/10.7554/eLife.07780

Share this article

https://doi.org/10.7554/eLife.07780

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.