First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass

  1. Guangliang Wang
  2. Surendra K Rajpurohit
  3. Fabien Delaspre
  4. Steven L Walker
  5. David T White
  6. Alexis Ceasrine
  7. Rejji Kuruvilla
  8. Ruo-jing Li
  9. Joong S Shim
  10. Jun O Liu
  11. Michael J Parsons
  12. Jeff S Mumm  Is a corresponding author
  1. Johns Hopkins University, United States
  2. Georgia Regents University, United States
  3. University of Macau, China

Abstract

Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). Here, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved drugs that increased the number of insulin-producing β cells in the pancreas. Twenty-four drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes.

Article and author information

Author details

  1. Guangliang Wang

    McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Surendra K Rajpurohit

    Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
    Competing interests
    No competing interests declared.
  3. Fabien Delaspre

    McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Steven L Walker

    Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
    Competing interests
    No competing interests declared.
  5. David T White

    Wilmer Eye Institute, Johns Hopkins University, Augusta, United States
    Competing interests
    No competing interests declared.
  6. Alexis Ceasrine

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Rejji Kuruvilla

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Ruo-jing Li

    Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Joong S Shim

    Faculty of Health Sciences, University of Macau, Macau, China
    Competing interests
    No competing interests declared.
  10. Jun O Liu

    Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  11. Michael J Parsons

    McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  12. Jeff S Mumm

    Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
    For correspondence
    jmumm3@jhmi.edu
    Competing interests
    Jeff S Mumm, acts as a consultant for, Luminomics Inc., a company which uses drug discovery techniques applied in thetext.

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved animal care and use committee (ACUC) protocols of Johns Hopkins University and Georgia Regents University

Version history

  1. Received: April 21, 2015
  2. Accepted: July 24, 2015
  3. Accepted Manuscript published: July 28, 2015 (version 1)
  4. Version of Record published: August 14, 2015 (version 2)

Copyright

© 2015, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,492
    views
  • 1,255
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guangliang Wang
  2. Surendra K Rajpurohit
  3. Fabien Delaspre
  4. Steven L Walker
  5. David T White
  6. Alexis Ceasrine
  7. Rejji Kuruvilla
  8. Ruo-jing Li
  9. Joong S Shim
  10. Jun O Liu
  11. Michael J Parsons
  12. Jeff S Mumm
(2015)
First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass
eLife 4:e08261.
https://doi.org/10.7554/eLife.08261

Share this article

https://doi.org/10.7554/eLife.08261

Further reading

    1. Cancer Biology
    2. Cell Biology
    Julian JA Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article Updated

    Collective cell migration is fundamental for the development of organisms and in the adult for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell–cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell–cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell–cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective SC migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased SC collective migration and increased clustering of SCs within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.