Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

  1. Ruzbeh Mosadeghi
  2. Kurt M Reichermeier
  3. Martin Winkler
  4. Anne Schreiber
  5. Justin M Reitsma
  6. Yaru Zhang
  7. Florian Stengel
  8. Junyue Cao
  9. Minsoo Kim
  10. Michael J Sweredoski
  11. Sonja Hess
  12. Alexander Leitner
  13. Ruedi Aebersold
  14. Matthias Peter
  15. Raymond J Deshaies
  16. Radoslav I Enchev  Is a corresponding author
  1. University of Southern California, United States
  2. California Instittute of Technology, United States
  3. Swiss Federal Institute of Technology, Switzerland
  4. University of Konstanz, Germany
  5. California Institute of Technology, United States
  6. ETH Zurich, Switzerland

Abstract

The COP9-Signalosome (CSN) regulates cullin-RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network.

Article and author information

Author details

  1. Ruzbeh Mosadeghi

    Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Kurt M Reichermeier

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  3. Martin Winkler

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  4. Anne Schreiber

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  5. Justin M Reitsma

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  6. Yaru Zhang

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  7. Florian Stengel

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    No competing interests declared.
  8. Junyue Cao

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  9. Minsoo Kim

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  10. Michael J Sweredoski

    Proteome Exploration Lab, Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  11. Sonja Hess

    Proteome Exploration Lab, Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  12. Alexander Leitner

    Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  13. Ruedi Aebersold

    Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  14. Matthias Peter

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  15. Raymond J Deshaies

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    Raymond J Deshaies, Reviewing editor, eLife.
  16. Radoslav I Enchev

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    For correspondence
    radoslav.enchev@bc.biol.ethz.ch
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. J Wade Harper, Harvard Medical School, United States

Version history

  1. Received: October 5, 2015
  2. Accepted: March 30, 2016
  3. Accepted Manuscript published: March 31, 2016 (version 1)
  4. Accepted Manuscript updated: April 2, 2016 (version 2)
  5. Version of Record published: May 23, 2016 (version 3)

Copyright

© 2016, Mosadeghi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,306
    views
  • 1,118
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruzbeh Mosadeghi
  2. Kurt M Reichermeier
  3. Martin Winkler
  4. Anne Schreiber
  5. Justin M Reitsma
  6. Yaru Zhang
  7. Florian Stengel
  8. Junyue Cao
  9. Minsoo Kim
  10. Michael J Sweredoski
  11. Sonja Hess
  12. Alexander Leitner
  13. Ruedi Aebersold
  14. Matthias Peter
  15. Raymond J Deshaies
  16. Radoslav I Enchev
(2016)
Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle
eLife 5:e12102.
https://doi.org/10.7554/eLife.12102

Share this article

https://doi.org/10.7554/eLife.12102

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.