NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures

  1. Lindsey Seldin
  2. Andrew Muroyama
  3. Terry Lechler  Is a corresponding author
  1. Vanderbilt University Medical Center, United States
  2. Duke University Medical Center, United States

Abstract

Mitotic spindle orientation is used to generate cell fate diversity and tissue architecture. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that dynein/dynactin was sufficient to generate forces on microtubules (MTs) to orient spindles, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation and that NuMA's MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. We also show that loss of NuMA-MT interactions disrupts spindle orientation in the hair follicle matrix, resulting in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures.

Article and author information

Author details

  1. Lindsey Seldin

    Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrew Muroyama

    Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Terry Lechler

    Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, United States
    For correspondence
    terry.lechler@duke.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Yukiko M Yamashita, University of Michigan, United States

Ethics

Animal experimentation: All mouse studies were performed in accordance with our protocol (A147-15-05) approved by the Institutional Animal Care and Use Committee of Duke University (A147-15-05).

Version history

  1. Received: October 22, 2015
  2. Accepted: January 13, 2016
  3. Accepted Manuscript published: January 14, 2016 (version 1)
  4. Version of Record published: February 8, 2016 (version 2)

Copyright

© 2016, Seldin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,997
    views
  • 937
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lindsey Seldin
  2. Andrew Muroyama
  3. Terry Lechler
(2016)
NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures
eLife 5:e12504.
https://doi.org/10.7554/eLife.12504

Share this article

https://doi.org/10.7554/eLife.12504

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.