Distribution of neurosensory progenitor pools during inner ear morphogenesis unveiled by cell lineage reconstruction

  1. Sylvia Dyballa
  2. Thierry Savy
  3. Philipp Germann
  4. Karol Mikula
  5. Mariana Remesikova
  6. Róbert Špir
  7. Andrea Zecca
  8. Nadine Peyriéras
  9. Cristina Pujades  Is a corresponding author
  1. Universitat Pompeu Fabra, Spain
  2. USR3695 CNRS, France
  3. Center for Genomic Regulation, Spain
  4. Slovak University of Technology, Slovakia

Abstract

Reconstructing the lineage of cells is central to understanding how the wide diversity of cell types develops. Here, we provide the neurosensory lineage reconstruction of a complex sensory organ, the inner ear, by imaging zebrafish embryos in vivo over an extended timespan, combining cell tracing and cell fate marker expression over time. We deliver the first dynamic map of early neuronal and sensory progenitor pools in the whole otic vesicle. It highlights the remodeling of the neuronal progenitor domain upon neuroblast delamination, and reveals that the order and place of neuroblasts' delamination from the otic epithelium prefigure their position within the SAG. Sensory and non-sensory domains harbor different proliferative activity contributing distinctly to the overall growth of the structure. Therefore, the otic vesicle case exemplifies a generic morphogenetic process where spatial and temporal cues regulate cell fate and functional organization of the rudiment of the definitive organ.

Article and author information

Author details

  1. Sylvia Dyballa

    Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Thierry Savy

    Multilevel Dynamics in Morphogenesis Unit, USR3695 CNRS, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Philipp Germann

    Systems Biology Unit, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2057-4883
  4. Karol Mikula

    Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
    Competing interests
    The authors declare that no competing interests exist.
  5. Mariana Remesikova

    Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
    Competing interests
    The authors declare that no competing interests exist.
  6. Róbert Špir

    Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrea Zecca

    Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Nadine Peyriéras

    Multilevel Dynamics in Morphogenesis Unit, USR3695 CNRS, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Cristina Pujades

    Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    For correspondence
    cristina.pujades@upf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6423-7451

Funding

Ministerio de Economía y Competitividad (BFU2012-31994)

  • Cristina Pujades

Agence Nationale de la Recherche (ANR-10-INBS-04)

  • Cristina Pujades

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII3 141918)

  • Philipp Germann

Ministerio de Economía y Competitividad (MDM-2014-0370)

  • Cristina Pujades

Ministerio de Economía y Competitividad (SEV-2012-0208)

  • Philipp Germann

Agence Nationale de la Recherche (ANR-11-EQPX-0029)

  • Thierry Savy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Ethics

Animal experimentation: This study was performed in strict accordance with the European Regulations. Zebrafish embryos were obtained by mating of adult fish using standard methods. All fish strains were maintained individually as inbred lines. All protocols used have been approved by the Institutional Animal Care and Use Ethic Committee (PRBB-IACUEC), and implemented according to national and European regulations. All experiments were carried out in accordance with the principles of the 3Rs. All our experiments were carried out using the CPC16-008/9125 protocol approved by the Generalitat of Catalonia.

Version history

  1. Received: October 11, 2016
  2. Accepted: December 23, 2016
  3. Accepted Manuscript published: January 4, 2017 (version 1)
  4. Accepted Manuscript updated: January 12, 2017 (version 2)
  5. Version of Record published: January 18, 2017 (version 3)

Copyright

© 2017, Dyballa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,743
    views
  • 396
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sylvia Dyballa
  2. Thierry Savy
  3. Philipp Germann
  4. Karol Mikula
  5. Mariana Remesikova
  6. Róbert Špir
  7. Andrea Zecca
  8. Nadine Peyriéras
  9. Cristina Pujades
(2017)
Distribution of neurosensory progenitor pools during inner ear morphogenesis unveiled by cell lineage reconstruction
eLife 6:e22268.
https://doi.org/10.7554/eLife.22268

Share this article

https://doi.org/10.7554/eLife.22268

Further reading

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.

    1. Cell Biology
    Tongtong Ma, Ruimin Ren ... Heng Wang
    Research Article

    Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.