Computationally-driven identification of antibody epitopes

  1. Casey K Hua
  2. Albert T Gacerez
  3. Charles L Sentman
  4. Margaret E Ackerman
  5. Yoonjoo Choi  Is a corresponding author
  6. Chris Bailey-Kellogg  Is a corresponding author
  1. Dartmouth College, United States
  2. Korea Advanced Institute for Science and Technology, Republic of Korea

Abstract

Understanding where antibodies recognize antigens can help define mechanisms of action and provide insights into progression of immune responses. We investigate the extent to which information about binding specificity implicitly encoded in amino acid sequence can be leveraged to identify antibody epitopes. In computationally-driven epitope localization, possible antibody-antigen binding modes are modeled, and targeted panels of antigen variants are designed to experimentally test these hypotheses. Prospective application of this approach to two antibodies enabled epitope localization using five or fewer variants per antibody, or alternatively, a six-variant panel for both simultaneously. Retrospective analysis of a variety of antibodies and antigens demonstrated an almost 90% success rate with an average of three antigen variants, further supporting the observation that the combination of computational modeling and protein design can reveal key determinants of antibody-antigen binding and enable efficient studies of collections of antibodies identified from polyclonal samples or engineered libraries.

Article and author information

Author details

  1. Casey K Hua

    Thayer School of Engineering, Dartmouth College, Hanover, United States
    Competing interests
    No competing interests declared.
  2. Albert T Gacerez

    Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
    Competing interests
    No competing interests declared.
  3. Charles L Sentman

    Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
    Competing interests
    No competing interests declared.
  4. Margaret E Ackerman

    Thayer School of Engineering, Dartmouth College, Hanover, United States
    Competing interests
    No competing interests declared.
  5. Yoonjoo Choi

    Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, Republic of Korea
    For correspondence
    yoonjoo.choi@kaist.ac.kr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9687-8093
  6. Chris Bailey-Kellogg

    Department of Computer Science, Dartmouth College, Hanover, United States
    For correspondence
    cbk@cs.dartmouth.edu
    Competing interests
    Chris Bailey-Kellogg, Dartmouth faculty and a co-member of Stealth Biologics, LLC, a Delaware biotechnology company. This author acknowledges that there is a potential financial conflict of interest related to his associations with this company, and he hereby affirms that the data presented in this paper is free of any bias. This work has been reviewed and approved as specified in Chris Bailey-Kellogg's Dartmouth conflict of interest management plans..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1860-0912

Funding

National Institutes of Health (R01 GM098977)

  • Chris Bailey-Kellogg

National Research Foundation of Korea (2016H1D3A1938246)

  • Yoonjoo Choi

National Science Foundation (CNS-1205521)

  • Chris Bailey-Kellogg

National Institutes of Health (5F30 AI122970-02)

  • Casey K Hua

National Institutes of Health (1R01AI102691)

  • Margaret E Ackerman

Center of Biomedical Research Excellence (8P30GM103415)

  • Charles L Sentman
  • Margaret E Ackerman

Allan U. Munck Education and Research Fund at Dartmouth

  • Charles L Sentman
  • Margaret E Ackerman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Max Vasquez, Adimab Inc., United States

Version history

  1. Received: May 26, 2017
  2. Accepted: December 2, 2017
  3. Accepted Manuscript published: December 4, 2017 (version 1)
  4. Version of Record published: December 21, 2017 (version 2)

Copyright

© 2017, Hua et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,941
    views
  • 874
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Casey K Hua
  2. Albert T Gacerez
  3. Charles L Sentman
  4. Margaret E Ackerman
  5. Yoonjoo Choi
  6. Chris Bailey-Kellogg
(2017)
Computationally-driven identification of antibody epitopes
eLife 6:e29023.
https://doi.org/10.7554/eLife.29023

Share this article

https://doi.org/10.7554/eLife.29023

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.