Unique-region phosphorylation targets LynA for rapid degradation, tuning its expression and signaling in myeloid cells

  1. Ben F Brian
  2. Adrienne S Jolicoeur
  3. Candace R Guerrero
  4. Myra G Nunez
  5. Zoi E Sychev
  6. Siv A Hegre
  7. Pål Sætrom
  8. Nagy Habib
  9. Justin M Drake
  10. Kathryn L Schwertfeger
  11. Tanya S Freedman  Is a corresponding author
  1. University of Minnesota, United States
  2. Norwegian University of Science and Technology, Norway
  3. Imperial College London, United Kingdom

Abstract

The activity of Src-family kinases (SFKs), which phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs), is a critical factor regulating myeloid-cell activation. We reported previously that the SFK LynA is uniquely susceptible to rapid ubiquitin-mediated degradation in macrophages, functioning as a rheostat regulating signaling (Freedman et al., 2015). We now report the mechanism by which LynA is preferentially targeted for degradation and how cell specificity is built into the LynA rheostat. Using genetic, biochemical, and quantitative phosphopeptide analyses, we found that the E3 ubiquitin ligase c-Cbl preferentially targets LynA via a phosphorylated tyrosine (Y32) in its unique region. This distinct mode of c-Cbl recognition depresses steady-state expression of LynA in macrophages derived from mice. Mast cells, however, express little c-Cbl and have correspondingly high LynA. Upon activation, mast-cell LynA is not rapidly degraded, and SFK-mediated signaling is amplified relative to macrophages. Cell-specific c-Cbl expression thus builds cell specificity into the LynA checkpoint.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for graphs in Figure 1, Figure 1-figure supplement 1, Figure 2, Figure 3, Figure 3-figure supplement 2, Figure 4, Figure 4-figure supplement 1, Figure 4-figure supplement 5, Figure 5, Figure 6, Figure 6-figure supplement 1, Figure 7, Figure 8, and Figure 9.Data sets and calibration curves resulting from our targeted mass spectrometry studies have been deposited in Panorama Public (https://panoramaweb.org/project/Panorama%20Public/begin.view?)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ben F Brian

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adrienne S Jolicoeur

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Candace R Guerrero

    College of Biological Sciences Center for Mass Spectrometry and Proteomics, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Myra G Nunez

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zoi E Sychev

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Siv A Hegre

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Pål Sætrom

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  8. Nagy Habib

    Department of Surgery and Cancer, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Justin M Drake

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kathryn L Schwertfeger

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Tanya S Freedman

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    For correspondence
    tfreedma@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5168-5829

Funding

NIH Office of the Director (R01AR073966)

  • Tanya S Freedman

NIH Office of the Director (R03AI130978)

  • Tanya S Freedman

American Cancer Society (UMN IRG-58-001-55)

  • Tanya S Freedman

University of Minnesota (Grant-in-Aid #92286)

  • Tanya S Freedman

University of Minnesota (Research and Equipment Award NF-0315-02)

  • Tanya S Freedman

University of Minnesota (Center for Autoimmune Diseases Research Pilot Grant)

  • Tanya S Freedman

NIH Office of the Director (R01CA215052)

  • Kathryn L Schwertfeger

NIH Office of the Director (T32DA007097)

  • Ben F Brian

Research Council of Norway (230338)

  • Pål Sætrom

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Roger J Davis, University of Massachusetts Medical School, United States

Ethics

Animal experimentation: All animal use complies with University of Minnesota (UMN) and National Institutes of Health (NIH) policy (Animal Welfare Assurance Number A3456-01). UMN is accredited by AAALAC, and all animal use was approved by the UMN Institutional Animal Care and Use Committee (IACUC, protocol # 1603-33559A). Animals are kept under supervision of a licensed doctor of veterinary medicine and supporting veterinary staff under strict NIH guidelines.

Version history

  1. Received: February 14, 2019
  2. Accepted: July 6, 2019
  3. Accepted Manuscript published: July 8, 2019 (version 1)
  4. Version of Record published: July 26, 2019 (version 2)

Copyright

© 2019, Brian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,784
    views
  • 218
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ben F Brian
  2. Adrienne S Jolicoeur
  3. Candace R Guerrero
  4. Myra G Nunez
  5. Zoi E Sychev
  6. Siv A Hegre
  7. Pål Sætrom
  8. Nagy Habib
  9. Justin M Drake
  10. Kathryn L Schwertfeger
  11. Tanya S Freedman
(2019)
Unique-region phosphorylation targets LynA for rapid degradation, tuning its expression and signaling in myeloid cells
eLife 8:e46043.
https://doi.org/10.7554/eLife.46043

Share this article

https://doi.org/10.7554/eLife.46043

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.