Abstract

Drosophila blood cells, called hemocytes, are classified into plasmatocytes, crystal cells, and lamellocytes based on the expression of a few marker genes and cell morphologies, which are inadequate to classify the complete hemocyte repertoire. Here, we used single-cell RNA sequencing (scRNA-seq) to map hemocytes across different inflammatory conditions in larvae. We resolved plasmatocytes into different states based on the expression of genes involved in cell cycle, antimicrobial response, and metabolism together with the identification of intermediate states. Further, we discovered rare subsets within crystal cells and lamellocytes that express fibroblast growth factor (FGF) ligand branchless and receptor breathless, respectively. We demonstrate that these FGF components are required for mediating effective immune responses against parasitoid wasp eggs, highlighting a novel role for FGF signaling in inter-hemocyte crosstalk. Our scRNA-seq analysis reveals the diversity of hemocytes and provides a rich resource of gene expression profiles for a systems-level understanding of their functions.

Data availability

Sequencing data have been deposited in GEO under the accession number GSE146596Elsewhere, data can be visualized at: www.flyrnai.org/scRNA/blood/Data code can accessed at: https://github.com/hbc/A-single-cell-survey-of-Drosophila-blood

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sudhir Gopal Tattikota

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    For correspondence
    sudhir_gt@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0318-5533
  2. Bumsik Cho

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  3. Yifang Liu

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Yanhui Hu

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Victor Barrera

    Biostatistics, Harvard T H Chan Bioinformatics Core, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0590-4634
  6. Michael J Steinbaugh

    Biostatistics, Harvard T H Chan Bioinformatics Core, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2403-2221
  7. Sang-Ho Yoon

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2611-5554
  8. Aram Comjean

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. Fangge Li

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  10. Franz Dervis

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  11. Ruei-Jiun Hung

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  12. Jin-Wu Nam

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  13. Shannan Ho Sui

    Biostatistics, Harvard T H Chan Bioinformatics Core, Boston, United States
    Competing interests
    No competing interests declared.
  14. Jiwon Shim

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    Jiwon Shim, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2409-1130
  15. Norbert Perrimon

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    For correspondence
    perrimon@receptor.med.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7542-472X

Funding

Samsung Science and Technology Foundation (SSTF-BA1701-15)

  • Jiwon Shim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruno Lemaître, École Polytechnique Fédérale de Lausanne, Switzerland

Version history

  1. Received: December 30, 2019
  2. Accepted: May 8, 2020
  3. Accepted Manuscript published: May 12, 2020 (version 1)
  4. Version of Record published: May 19, 2020 (version 2)

Copyright

© 2020, Tattikota et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,147
    views
  • 1,097
    downloads
  • 134
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sudhir Gopal Tattikota
  2. Bumsik Cho
  3. Yifang Liu
  4. Yanhui Hu
  5. Victor Barrera
  6. Michael J Steinbaugh
  7. Sang-Ho Yoon
  8. Aram Comjean
  9. Fangge Li
  10. Franz Dervis
  11. Ruei-Jiun Hung
  12. Jin-Wu Nam
  13. Shannan Ho Sui
  14. Jiwon Shim
  15. Norbert Perrimon
(2020)
A single-cell survey of Drosophila blood
eLife 9:e54818.
https://doi.org/10.7554/eLife.54818

Share this article

https://doi.org/10.7554/eLife.54818

Further reading

    1. Developmental Biology
    Meng-Hao Pan, Kun-Huan Zhang ... Shao-Chen Sun
    Research Article

    During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.