Multi-omic rejuvenation of human cells by maturation phase transient reprogramming

  1. Diljeet Gill
  2. Aled Parry
  3. Fátima Santos
  4. Hanneke Okkenhaug
  5. Christopher D Todd
  6. Irene Hernando-Herraez
  7. Thomas M Stubbs
  8. Inês Milagre  Is a corresponding author
  9. Wolf Reik  Is a corresponding author
  1. Babraham Institute, United Kingdom
  2. Chronomics Limited, United Kingdom
  3. Instituto Gulbenkian de Ciência, Portugal
  4. Altos Labs, United Kingdom

Abstract

Ageing is the gradual decline in organismal fitness that occurs over time leading to tissue dysfunction and disease. At the cellular level, ageing is associated with reduced function, altered gene expression and a perturbed epigenome. Somatic cell reprogramming, the process of converting somatic cells to induced pluripotent stem cells (iPSCs), can reverse these age-associated changes. However, during iPSC reprogramming, somatic cell identity is lost, and can be difficult to reacquire as re-differentiated iPSCs often resemble foetal rather than mature adult cells. Recent work has demonstrated that the epigenome is already rejuvenated by the maturation phase of reprogramming, which suggests full iPSC reprogramming is not required to reverse ageing of somatic cells. Here we have developed the first 'maturation phase transient reprogramming' (MPTR) method, where reprogramming factors are expressed until this rejuvenation point followed by withdrawal of their induction. Using dermal fibroblasts from middle age donors, we found that cells temporarily lose and then reacquire their fibroblast identity during MPTR, possibly as a result of epigenetic memory at enhancers and/or persistent expression of some fibroblast genes. Excitingly, our method substantially rejuvenated multiple cellular attributes including the transcriptome, which was rejuvenated by around 30 years as measured by a novel transcriptome clock. The epigenome, including H3K9me3 histone methylation levels and the DNA methylation ageing clock, was rejuvenated to a similar extent. The magnitude of rejuvenation instigated by MTPR appears substantially greater than that achieved in previous transient reprogramming protocols. In addition, MPTR fibroblasts produced youthful levels of collagen proteins, and showed partial functional rejuvenation of their migration speed. Finally, our work suggests that more extensive reprogramming does not necessarily result in greater rejuvenation but instead that optimal time windows exist for rejuvenating the transcriptome and the epigenome. Overall, we demonstrate that it is possible to separate rejuvenation from complete pluripotency reprogramming, which should facilitate the discovery of novel anti-ageing genes and therapies.

Data availability

DNA methylation array and RNA-seq data are available on Gene Expression Omnibus under the accession number: GSE165180.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Diljeet Gill

    Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5725-2466
  2. Aled Parry

    Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5192-3727
  3. Fátima Santos

    Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3854-4084
  4. Hanneke Okkenhaug

    Imaging Facility, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0669-4069
  5. Christopher D Todd

    Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Irene Hernando-Herraez

    Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Thomas M Stubbs

    Chronomics Limited, Norwich, United Kingdom
    Competing interests
    Thomas M Stubbs, is CEO and shareholder of Chronomics.
  8. Inês Milagre

    Laboratory for Epigenetic Mechanisms, Instituto Gulbenkian de Ciência, Oeiras, Portugal
    For correspondence
    imilagre@igc.gulbenkian.pt
    Competing interests
    No competing interests declared.
  9. Wolf Reik

    Altos Labs, Cambridge, United Kingdom
    For correspondence
    wolf.reik@babraham.ac.uk
    Competing interests
    Wolf Reik, is a consultant and shareholder of Cambridge Epigenetix. Is employed by Altos Labs..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0216-9881

Funding

Biotechnology and Biological Sciences Research Council

  • Diljeet Gill
  • Fátima Santos
  • Hanneke Okkenhaug
  • Christopher D Todd
  • Irene Hernando-Herraez
  • Thomas M Stubbs
  • Inês Milagre
  • Wolf Reik

Wellcome Trust

  • Aled Parry

Milky Way Research Foundation

  • Diljeet Gill
  • Wolf Reik

Wellcome Investigator award (210754/Z/18/Z)

  • Wolf Reik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jessica K Tyler, Weill Cornell Medicine, United States

Version history

  1. Preprint posted: January 17, 2021 (view preprint)
  2. Received: June 24, 2021
  3. Accepted: April 6, 2022
  4. Accepted Manuscript published: April 8, 2022 (version 1)
  5. Version of Record published: April 21, 2022 (version 2)

Copyright

© 2022, Gill et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 73,163
    views
  • 8,626
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Diljeet Gill
  2. Aled Parry
  3. Fátima Santos
  4. Hanneke Okkenhaug
  5. Christopher D Todd
  6. Irene Hernando-Herraez
  7. Thomas M Stubbs
  8. Inês Milagre
  9. Wolf Reik
(2022)
Multi-omic rejuvenation of human cells by maturation phase transient reprogramming
eLife 11:e71624.
https://doi.org/10.7554/eLife.71624

Share this article

https://doi.org/10.7554/eLife.71624

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Ruby Oberin, Sigrid Petautschnig ... Patrick S Western
    Research Article Updated

    Germline epigenetic programming, including genomic imprinting, substantially influences offspring development. Polycomb Repressive Complex 2 (PRC2) plays an important role in Histone 3 Lysine 27 trimethylation (H3K27me3)-dependent imprinting, loss of which leads to growth and developmental changes in mouse offspring. In this study, we show that offspring from mouse oocytes lacking the PRC2 protein Embryonic Ectoderm Development (EED) were initially developmentally delayed, characterised by low blastocyst cell counts and substantial growth delay in mid-gestation embryos. This initial developmental delay was resolved as offspring underwent accelerated fetal development and growth in late gestation resulting in offspring that were similar stage and weight to controls at birth. The accelerated development and growth in offspring from Eed-null oocytes was associated with remodelling of the placenta, which involved an increase in fetal and maternal tissue size, conspicuous expansion of the glycogen-enriched cell population, and delayed parturition. Despite placental remodelling and accelerated offspring fetal growth and development, placental efficiency, and fetal blood glucose levels were low, and the fetal blood metabolome was unchanged. Moreover, while expression of the H3K27me3-imprinted gene and amino acid transporter Slc38a4 was increased, fetal blood levels of individual amino acids were similar to controls, indicating that placental amino acid transport was not enhanced. Genome-wide analyses identified extensive transcriptional dysregulation and DNA methylation changes in affected placentas, including a range of imprinted and non-imprinted genes. Together, while deletion of Eed in growing oocytes resulted in fetal growth and developmental delay and placental hyperplasia, our data indicate a remarkable capacity for offspring fetal growth to be normalised despite inefficient placental function and the loss of H3K27me3-dependent genomic imprinting.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Chananchida Sang-aram, Robin Browaeys ... Yvan Saeys
    Research Article

    Spatial transcriptomics (ST) technologies allow the profiling of the transcriptome of cells while keeping their spatial context. Since most commercial untargeted ST technologies do not yet operate at single-cell resolution, computational methods such as deconvolution are often used to infer the cell type composition of each sequenced spot. We benchmarked 11 deconvolution methods using 63 silver standards, 3 gold standards, and 2 case studies on liver and melanoma tissues. We developed a simulation engine called synthspot to generate silver standards from single-cell RNA-sequencing data, while gold standards are generated by pooling single cells from targeted ST data. We evaluated methods based on their performance, stability across different reference datasets, and scalability. We found that cell2location and RCTD are the top-performing methods, but surprisingly, a simple regression model outperforms almost half of the dedicated spatial deconvolution methods. Furthermore, we observe that the performance of all methods significantly decreased in datasets with highly abundant or rare cell types. Our results are reproducible in a Nextflow pipeline, which also allows users to generate synthetic data, run deconvolution methods and optionally benchmark them on their dataset (https://github.com/saeyslab/spotless-benchmark).