Ecdysone coordinates plastic growth with robust pattern in the developing wing

  1. André Nogueira Alves
  2. Marisa Matheus Oliveira
  3. Takashi Koyama
  4. Alexander Shingleton  Is a corresponding author
  5. Christen K Mirth  Is a corresponding author
  1. Monash University, Australia
  2. Instituto Gulbenkian de Ciência, Portugal
  3. University of Illinois at Chicago, United States

Abstract

Animals develop in unpredictable, variable environments. In response to environmental change some aspects of development adjust to generate plastic phenotypes. Other aspects of development, however, are buffered against environmental change to produce robust phenotypes. How organ development is coordinated to accommodate both plastic and robust developmental responses is poorly understood. Here, we demonstrate that the steroid hormone ecdysone coordinates both plasticity of organ size and robustness of organ pattern in the developing wings of the fruit fly Drosophila melanogaster. Using fed and starved larvae that lack prothoracic glands, which synthesise ecdysone, we show that nutrition regulates growth both via ecdysone and via an ecdysone-independent mechanism, while nutrition regulates patterning only via ecdysone. We then demonstrate that growth shows a graded response to ecdysone concentration, while patterning shows a threshold response. Collectively, these data support a model where nutritionally-regulated ecdysone fluctuations confer plasticity by regulating disc growth in response to basal ecdysone levels, and confers robustness by initiating patterning only once ecdysone peaks exceeds a threshold concentration. This could represent a generalizable mechanism through which hormones coordinate plastic growth with robust patterning in the face of environmental change.

Data availability

All data and R scripts for analysis have been deposited on Figshare (DOI: 10.26180/13393676).

The following data sets were generated

Article and author information

Author details

  1. André Nogueira Alves

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Marisa Matheus Oliveira

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Takashi Koyama

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4203-114X
  4. Alexander Shingleton

    Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
    For correspondence
    ashingle@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Christen K Mirth

    School of Biological Sciences, Monash University, Melbourne, Australia
    For correspondence
    christen.mirth@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9765-4021

Funding

Australian Research Council (FT170100259)

  • Christen K Mirth

National Science Foundation (IOS-0919855)

  • Alexander Shingleton

National Science Foundation (IOS-1557638)

  • Alexander Shingleton

National Science Foundation (IOS-1952385)

  • Alexander Shingleton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lynn M. Riddiford

Version history

  1. Preprint posted: December 16, 2020 (view preprint)
  2. Received: July 30, 2021
  3. Accepted: March 7, 2022
  4. Accepted Manuscript published: March 9, 2022 (version 1)
  5. Version of Record published: March 24, 2022 (version 2)

Copyright

© 2022, Nogueira Alves et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,752
    views
  • 237
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. André Nogueira Alves
  2. Marisa Matheus Oliveira
  3. Takashi Koyama
  4. Alexander Shingleton
  5. Christen K Mirth
(2022)
Ecdysone coordinates plastic growth with robust pattern in the developing wing
eLife 11:e72666.
https://doi.org/10.7554/eLife.72666

Share this article

https://doi.org/10.7554/eLife.72666

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, Brachydactyly B and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.

    1. Developmental Biology
    2. Immunology and Inflammation
    Tobias Weinberger, Messerer Denise ... Christian Schulz
    Research Article

    Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.