Editors for Developmental Biology
Senior editors
-
Sofia J Araújo
University of Barcelona, Spain
Sofia J Araújo is Associate Professor in Genetics, at the Department of Genetics Microbiology and Statistics, University of Barcelona, where she leads the genetics of cell behaviour research group. She received her PhD in Biochemistry from the University of London and did postdoctoral training at King’s College London and IBMB-CSIC in Barcelona. Her research at the University of Barcelona is centered in cell migration and branching morphogenesis, with the aim of understanding how branched organs develop and contribute to living organism homeostasis as well as the ageing process. She is currently head of the Genetics section of the Department of Genetics, Microbiology and Statistics, and board member of the Spanish Society for Developmental Biology. She also holds a Diploma in Science Communication from Birkbeck College, London, and has extensive experience in teaching, communication, and training of scientists on better ways of bringing science to the public.
- Expertise
- Cell Biology
- Developmental Biology
- Neuroscience
- Stem Cells and Regenerative Medicine
- Research focus
- neurodevelopment
- DNA repair
- single-cell branching
- cell migration
- tubulogenesis
- organogenesis
- Experimental organism
- D. melanogaster
- Competing interests statement
- Sofia J Araújo's research is currently funded by the Spanish Ministry of Science and Innovation and the Catalan Agency for Management of University and Research Grants (AGAUR).
-
Utpal Banerjee
University of California, Los Angeles, United States
Utpal Banerjee is the Irving and Jean Stone Professor and Chair of the Department of Molecular, Cell and Developmental Biology at the University of California, Los Angeles, with a joint appointment in the Department of Biological Chemistry at the David Geffen School of Medicine. He also serves as Co-Director of the Broad Stem Cell Research Center and as Director of the UCLA Interdepartmental Minor in Biomedical Research. He is a member of UCLA’s Jonsson Comprehensive Cancer Center and is affiliated with the Brain Research Institute and the Neuroscience Graduate Program.
Banerjee’s laboratory has worked on several oncogenic and metabolic signals that are important in development and disease. The lab studies the effects of systemic signals on the maintenance of blood progenitors in Drosophila, and the role of metabolic pathways in the control of proliferation and differentiation in the preimplantation mouse embryo.
- Expertise
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Cancer Biology
- Research focus
- haematopoiesis
- cancer biology
- Experimental organism
- D. melanogaster
- mouse
-
Albert Cardona
University of Cambridge, United Kingdom
Albert Cardona is a programme leader at the MRC LMB and a professor of neuroscience at the University of Cambridge, UK. Formerly a group leader at HHMI Janelia and at the Institute of Neuroinformatics in Zurich. Trained in biology with emphasis in genetics, development and evolution, a passion and need for image processing of bioimagery led to co-founding the Fiji open source software, as well as the TrakEM2 and CATMAID softwares for image registration, segmentation, visualization and the
analysis of neural circuits. His laboratory studies how the structure of a neural circuit relates to its function. Albert's core expertise is in reconstructing neuronal anatomy and synaptic circuits – the connectome – of small animal brains using volume electron microscopy, to then analyse the circuit architecture and formulate computational models of circuit function that capture the neural dynamics and explain how circuits implement behaviour.
- Expertise
- Neuroscience
- Developmental Biology
- Research focus
- neuroscience
- image processing
- development
- neural evolution
- Experimental organism
- D. melanogaster
- squids
- Amphioxus
- lizards
- Competing interests statement
- Albert Cardona receives funding from the MRC LMB and from the Wellcome Trust. He has served as editor of Open Biology and as Reviewing Editor for eLife.
-
Kathryn Cheah
The University of Hong Kong, Hong Kong SAR China
Kathryn Cheah is a developmental geneticist and Jimmy & Emily Tang Professor in Molecular Genetics and Chair Professor of Biochemistry at the University of Hong Kong. She received her BSc Hons degree in Biology from the University of London and PhD in Molecular Biology from Cambridge University, U.K. After postdoctoral training at the University of Manchester and Imperial Cancer Research Fund in the UK, she joined the University of Hong Kong. Her research focuses on using functional genomics and mouse models to understand gene function and regulation, the associated gene regulatory networks and mechanisms of disease, with a focus on skeletal and inner ear development, congenital and common skeletal disorders. Notable contributions are the identification of SOX2 as essential for prosensory development in the inner ear, SOX9 as a key regulator of COL2A1 and the cartilage gene regulatory network, a lineage continuum for cartilage and bone cells and a causative mechanistic link between endoplasmic reticulum stress and skeletal disorders. She is an elected Fellow of the Global Science Academy, The World Academy Sciences (TWAS).
She was the founding President of the Hong Kong Society for Developmental Biology and the Hong Kong representative for the Asia-Pacific Developmental Biology Network and the International Society of Developmental Biology (2004-2013), elected President of the International Society for Matrix Biology (2006-2008), Senior External Fellow of the University of Freiburg Institute of Advanced Studies (2011-2012) and elected member of the Board of Directors of the International Society of Differentiation (2012-2018).
She brings editorial expertise to eLife having previously served as Associate Editor for Genesis, guest Associate Editor for PLOS Genetics, Asian Editor for Development Growth & Differentiation (2015-2016), editorial board member of Matrix Biology, BioEssays, Annual Reviews of Genomics & Human Genetics, and as Reviewing Editor of eLife.
- Expertise
- Developmental Biology
- Genetics and Genomics
- Research focus
- gene regulation and development
- inherited and degenerative skeletal disorder
- inner ear
- matrix biology
- Experimental organism
- mouse
- human
- Competing interests statement
- Kathryn Cheah receives research funding from the Hong Kong Research Grants Council and the Hong Kong Health and Medical Research Fund. She is serving as a member of Hong Kong’s University Grants Council Biology Panel for the Research Assessment Exercise 2020. She currently also serves on the editorial boards of Scientific Reports, Genesis and Journal of Orthopaedic Research. She is also serving on the Hong Kong Advisory Board of the Gordon Research Conferences (GRC) and the GRC Conference Evaluation Committee.
-
Claude Desplan
New York University, United States
Claude Desplan, DSc, PhD is a Silver Professor of Biology and Neuroscience at NYU and an Affiliate Professor at the CGSB at NYU in Abu Dhabi. Dr. Desplan was born in Algeria and was trained at the Ecole Normale Supérieure in St. Cloud, France. He received his DSc at INSERM in Paris in 1983 working with M.S. Moukhtar and M. Thomasset on calcium regulation. He joined Pat O’Farrell at UCSF as a postdoc where he demonstrated that the homeodomain, a conserved signature of many developmental genes, is a DNA binding motif. In 1987, he joined the Faculty of Rockefeller University as an HHMI Assistant/Associate Investigator to pursue structural studies of the homeodomain and the evolution of axis formation.
In 1999, Dr. Desplan joined NYU where he investigates the generation of neural diversity using the Drosophila visual system. His team has described the molecular mechanisms that pattern the eye and showed how stochastic decisions contribute to the diversification of photoreceptors. It also investigates the development and function of the optic lobes where neuronal diversity is generated by spatio-temporal patterning of neuroblasts, a mechanism that also applies to cortical development in mammals. Recently, his lab has also provided a functional understanding of the neuronal and computational mechanisms underlying motion detection.
His laboratory also uses ‘evo-devo’ approaches to understand the mechanisms by which sensory systems adapt to different ecological conditions, from flies to ants to butterflies.
Dr. Desplan serves on multiple scientific advisory boards and committees for funding agencies. He is an elected member of the AAAS, of EMBO, the New York Academy of Sciences as well as the US National Academy of Sciences.
- Expertise
- Developmental Biology
- Evolutionary Biology
- Neuroscience
- Research focus
- development neurobiology
- evo-devo
- vision
- stochasticity in development
- rhodopsin
- aging and caste determination (ants)
- Experimental organism
- D. melanogaster
- ants
- insects
- butterflies
- wasps
- flies
- Competing interests statement
- Dr. Desplan has been a member of the Board of Reviewing Editor for Science for the last 10 years (non-renumerated). He is an academic editor for PLOS Biology and PLOS Genetics (non-renumerated). Dr. Desplan occasionally serves as academic editor for other scientific journals (e.g. PNAS). He is a consultant for the Khalifa Center for Genetic Engineering & Biotechnology Al Ain, UAE. Dr. Desplan receives funding from the NIH and the NYU Abu Dhabi Center for Genomics and Systems Biology.
-
Michael B Eisen
HHMI, University of California, Berkeley, United States
Michael Eisen majored in math as an undergraduate at Harvard, exploiting the department’s lack of interest in what students did outside of the field to pursue his true love of ecology and evolutionary biology. Trying to unite his quantitative side with his interest in biology, he entered the Harvard Graduate Program in Biophysics, completing his PhD with Don Wiley, using X-ray crystallography to study the evolution of influenza virus proteins.
After a stint as the play-by-play voice of the Columbia (Tennessee) Mules Professional Baseball Club, he joined the labs of Pat Brown and David Botstein at Stanford at the dawn of the era of functional genomics, where he played multiple roles in the development of DNA microarrays as a tool for studying biology. His most notable contribution was a 1998 paper showing how clustering methods can reveal underlying biological structure in genomic data that helped to establish many analytical paradigms in genomics.
He began his independent career at Lawrence Berkeley National Lab, before moving to the Department of Molecular and Cell Biology at UC Berkeley. In addition to the main focus of his lab – using experimental, computational and evolutionary methods to study spatial patterns of gene regulation in the early Drosophila embryo – he has a longstanding interest in understanding the molecular basis for the varied microorganisms that have evolved to manipulate animal behavior.
Outside of the lab, he has been a fervent and occasionally strident advocate for opening up the system of scholarly publishing, founding, along with Brown and Harold Varmus, the Public Library of Science (PLOS). More recently he has dabbled in politics and serves as an advisor to Impossible Foods, a company Brown started to create plant-based meats to end the planetary scourge of animal farming.
- Expertise
- Developmental Biology
- Genetics and Genomics
- Research focus
- development
- genomics
- embryogenesis
- computational biology
- Experimental organism
- D. melanogaster
- Competing interests statement
- Impossible Foods: I am an advisor to Impossible Foods, a company founded by my former postdoctoral advisor Patrick Brown, to develop plant-based alternatives to foods derived from animal projects. I got involved in the company because animal farming has a massively negative effect on the planet, and because I believe we can reduce this negative impact by offering consumers products that satisfy their desire for meat, cheese and other dairy products that have less of an impact on the environment. I spend time on the company because I believe deeply in its mission, but I also receive a small stipend for my work and own equity. 23andMe: I used to serve on the Scientific Advisory Board of 23andMe, a company that provides consumers with information on their DNA through genotyping and through a website that offers information on ancestry and ties the unique collection of DNA variants they contain to the emerging scientific literature on the effect of these mutation. I do not hold any equity in the company, but I support their mission and my long affiliation with them may constitute a conflict of interest. Public Library of Science: For 20 years I have been a public advocate for reforming the way scientists communicate, and much of my work in this domain focused on the Public Library of Science, a non-profit publisher of open-access scientific and medical journals on whose board of directors I served from 2002–18. My work for PLOS was strictly on a volunteer basis: at no point did I receive any compensation from the company for my role. Despite having no financial interest in PLOS, I have put a huge amount of blood, sweat and tears into the company. I believe fervently in its mission and have an obvious personal stake in its success, even though I am no longer affiliated with them. Science funding: As a working scientist who has received grants from a variety of government funding agencies, I have a professional interest in promoting science funding and in influencing the way research funds are distributed. Anyone who follows me knows that I speak my mind freely on the NIH and other funding agencies and their problems, but I will admit that I used to pull my punches occasionally for fear that it would influence my prospects of funding. I currently receive virtually all of my lab’s funding from the Howard Hughes Medical Institute, and thus I clearly have a professional conflict when talking about HHMI. Institutional: I work at the University of California, Berkeley, and have an institutional conflict of interest on anything dealing with UCB, with the University of California writ large, educational funding in California, and, arguably, public higher education policy at the national and state level. I also have a conflict of interest when talking about areas where UC, UCB or my department (Molecular and Cell Biology) have a financial interest, especially on patents. This is currently most relevant in regards to the patent interference case being contested by Berkeley, MIT and others over CRISPR technology. (Modified from “My Conflicts of Interest” at michaeleisen.org/blog.)
-
Jürgen Kleine-Vehn
University of Freiburg, Germany
Jürgen is a Professor at the University of Freiburg. He obtained his PhD for his work on plant cell polarity at the Flemish Institute of Biotechnology (VIB) at the Ghent University. He has been an Associate Professor at the University of Natural Resources and Life Sciences Vienna and is now full Professor and chair of Molecular Plant Physiology (MoPP) at the University of Freiburg. He works at the interface of quantitative plant cell biology and developmental plant genetics, addressing plant growth control at a subcellular to organ scale.
- Expertise
- Plant Biology
- Cell Biology
- Developmental Biology
- Research focus
- plant hormones
- growth control
- plant architecture
- Competing interests statement
- Jürgen Kleine-Vehn has received and profited from funding by the Friedrich Ebert Stiftung, Vienna Science and Technology Fund (WWTF), the Austrian Science Fund (FWF), the Austrian Academy of Sciences (OeAW), the European Research Council (ERC), the European Molecular Biology Organization (EMBO), and the German Research Foundation (DFG). He is on the editorial board of the International Journal of Molecular Science and on the advisory board of Review Commons (operated by EMBO). He has been an elected member of the Austrian Academy of Sciences (Young Curia).
-
Lois Smith
Harvard Medical School, Children's Hospital Boston, United States
Lois EH Smith MD, PhD is an ophthalmologist and clinician/scientist at Boston Children’s Hospital and Professor of Ophthalmology at Harvard Medical School. Her basic research work is in retinal neovascularization, both basic mechanism and treatment including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration and retinitis pigmentosa.
She has a long standing interest in eye diseases particularly retinopathy of prematurity, diabetic retinopathy, and AMD and in the mechanisms behind these diseases, particularly the underlying causes of neovascularization and the interactions between neurons and vessels. Many pathways that they have found have been translated into clinical trials, including replacement of IGF-1 in preterm infants and treatment of AMD with anti-VEGF antibodies in which they were the first to show the benefit of blocking VEGF in a mouse model of retinopathy. More recently Dr Smith's work has been interested in metabolic function in photoreceptors, particularly with respect to lipids. Photoreceptor metabolic dysfunction causes central vision loss in retinal degenerative diseases (including ROP) but is also implicated in age-related macular degeneration and diabetic retinopathy.
Dr Smith is the recipient of the Friedenwald award, the Alcon Research Institute award, the Silverman award, and the Bressler Prize.
- Expertise
- Developmental Biology
- Medicine
- Neuroscience
- Research focus
- age-related macular degeneration
- diabetic eye disease
- retinopathy
- ocular disease
- developmental neuroscience
- Competing interests statement
- Dr Smith has received funding from the National Eye Institute, Massachusetts Lions Eye Research Fund, the European Union, the Lowy Medical Research Institute, Foundation Fighting Blindness, Research to Prevent Blindness Senior Investigator Award, and the Alcon Award.Current editor roles include: Editor for Ophthalmology (Science), Editor for Journal of Clinical Ophthalmology, and Editor IOVS (Investigative Ophthalmology and Visual Science).
-
Didier Stainier
Max Planck Institute for Heart and Lung Research, Germany
Didier Stainier is the director of the Department of Developmental Genetics at the Max Planck Institute for Heart and Lung Research, Bad Nauheim (Frankfurt), Germany. He studied Biology in Wales, Belgium and the USA (Brandeis University) where he got a BA in 1984. He then received his PhD in Biochemistry and Biophysics from Harvard University (1990) where he investigated the cellular basis of axon guidance and target recognition in the developing mouse brain with Wally Gilbert. After a Helen Hay Whitney postdoctoral fellowship with Mark Fishman at the Massachusetts General Hospital (Boston), where he initiated the studies on zebrafish cardiac development, he set up his lab at the University of California, San Francisco in 1995, where he expanded his research to investigate questions of cell differentiation, tissue morphogenesis, organ homeostasis and function, as well as organ regeneration, in the zebrafish cardiovascular system and endodermal organs. In 2012, he moved to the Max Planck Institute where he continues to utilize both forward and reverse genetic approaches to investigate cellular and molecular mechanisms of developmental processes during vertebrate organ formation, in both zebrafish and mouse. He is also an Honorary Professor at Goethe University in Frankfurt. In addition to research and mentorship awards at UCSF, he was a Packard Fellow, Basil O’Connor scholar, established Investigator of the American Heart Association, received the American Association of Anatomists Harland Mossman Award in Developmental Biology, and was elected as a Fellow of the American Association for the Advancement of Science, Academia Europaea and European Molecular Biology Organization, as well as an Officier de l’ordre de Léopold de Belgique.
- Expertise
- Developmental Biology
- Research focus
- developmental genetics
- organogenesis
- tissue morphogenesis
- organ homeostasis
- Experimental organism
- zebrafish
- mouse
- Competing interests statement
- Didier Stainier has received funding from the Max Planck Society, the European Research Council, the National Institutes of Health, the Packard Foundation, the Deutsche Forschungsgemeinschaft, the American Heart Association, the Juvenile Diabetes Research Foundation and the Leducq Foundation among others. In addition to being a Senior Editor for eLife, he currently serves as a Managing Editor for Mechanisms of Development, is on the editorial board of Development and FEBS letters, and is an International Strategic Advisor for the National Institute of Genetics in Mishima, Japan. He previously served as a Section Editor for BMC Developmental Biology and was the founding chair of the Dev1 study section of the National Institutes of Health.
-
K VijayRaghavan
National Centre for Biological Sciences, Tata Institute of Fundamental Research, India
Vijay’s research aims to understand motor- and olfactory- circuit assembly: from deciphering how each component is made, interacts, and stabilises into functioning in the animal to allow behaviour in the real world. Related to the development of network function is its maintenance in the mature animal; another aspect of the work in the laboratory addresses how mature neurons and muscles are maintained. The laboratory uses a genetic approach, mainly using the fruit fly but also collaborating with those using mouse and cell-culture. VijayRaghavan is Secretary to the Government of India in the Ministry of Science and Technology in the Department of Biotechnology. He temporarily holds additional charge of the Department of Biotechnology. VijayRaghavan’s research continues at the National Centre for Biological Sciences (NCBS) of the Tata Institute of Fundamental Research (TIFR) in Bangalore, India, where he is Distinguished Professor. He studied engineering at the Indian Institute of Technology, Kanpur. His doctoral work was at TIFR, Mumbai and postdoctoral work at the California Institute of Technology. VijayRaghavan is a Fellow of the Royal Society, a Foreign Associate of the US National Academy of Sciences and a Foreign Associate of the European Molecular Biology Organization.
- Expertise
- Developmental Biology
- Chromosomes and Gene Expression
- Neuroscience
- Research focus
- genetics and genomics
- developmental biology
- neurogenetics
- neurobiology
- genetic basis of behavior
- Experimental organism
- D. melanogaster
- human
- mouse
- Competing interests statement
- K VijayRaghavan currently receives research support from the Indo–French research agency CEFIPRA, and core support from the National Centre for Biological Sciences (NCBS) of the Tata Institute of Fundamental Research (TIFR). Previous support was from the Rockefeller Foundation, the Wellcome Trust, the Indian Department of Science and Technology (DST), Department of Biotechnology (DBT), CEFIPRA, the Human Frontier Science Program (HFSP), and the US National Institutes of Health (NIH). VijayRaghavan serves on the Board of Governors of the Okinawa Institute of Science and Technology, is a member of the Advisory Committee of the Janelia Farm Research Campus of the HHMI, Chair of the Research Council of the Institute of Genomics and Integrative Biology, and Member of the Governing Council of the National Institute of Immunology. He is Associate Editor of BMC Developmental Biology, and a member of the editorial boards of Development, Seminars in Developmental Biology, and Bioconcepts. He is Chair of the Board of the Center for Cellular and Molecular Platforms (C-CAMP), a not-for-profit company of the National Centre for Biological Sciences and the stem cell institute, inStem, created to manage platform technologies and for technology transfer on the NCBS–inStem campus. He is a member of the board of the Madhuram Narayanan Centre for Exceptional Children, a not-for-profit school for disabled children in Chennai, and a member of the Board of Trustees of the Human Frontier Science Program.
-
Richard M White
Ludwig Institute for Cancer Research, University of Oxford, United Kingdom
Richard White, M.D., Ph.D, is a physician-scientist at the Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College. He is interested in basic mechanisms underlying metastasis, using the zebrafish as a model system. His work has established numerous techniques for cancer modeling and high-resolution imaging in the fish. Using these tools, the lab is focused on the cross-talk between tumor cells and the microenvironment, and how this interplay influences metastatic success. His work has revealed novel interactions between melanoma cells and adipocytes in the microenvironment, and how neural crest programs play roles in melanoma progression. He has been awarded the NIH Director’s New Innovator Award, the Pershing Square Foundation Award, and the Mark Foundation ASPIRE award.
- Expertise
- Cancer Biology
- Cell Biology
- Developmental Biology
- Medicine
- Research focus
- development
- neural crest
- zebrafish
- cancer
- melanoma
- metastasis
- microenvironment
- Experimental organism
- zebrafish
- Competing interests statement
- Richard White receives funding from the National Institutes of Health, the Pershing Square Sohn Foundation, the Mark Foundation, the Melanoma Research Alliance, the American Cancer Society and the Harry J. Lloyd Foundation. He receives consulting fees from N-of-One, Inc.
Reviewing editors
-
Cynthia L Andoniadou
King's College London, United Kingdom
- Expertise
- Developmental Biology
- Medicine
- Stem Cells and Regenerative Medicine
- Research focus
- stem cells
- endocrine
- pituitary gland
- adrenal gland
- paracrine signalling
- tumours
- Experimental organism
- human
- mouse
-
H. Efsun Arda
National Cancer Institute, United States
- Expertise
- Developmental Biology
- Chromosomes and Gene Expression
- Genetics and Genomics
- Research focus
- pancreas
- single-cell
- enhancers
- chromatin
-
Erika A Bach
New York University School of Medicine, United States
- Expertise
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- stem cell self-renewal
- stem cell differentiation
- cell competition
- stem cell competition
- transdifferentiation
- stem cell aging
- sex determination
- Experimental organism
- D. melanogaster
-
Michel Bagnat
Duke University, United States
- Expertise
- Cell Biology
- Developmental Biology
- Research focus
- morphogenesis
- tubulogenesis
- notochord
- spine
- gut
- epithelial
- polarity
- Experimental organism
- zebrafish
- mouse
-
Muthuswamy Balasubramanyam
ICMR Emeritus Scientist, Madras Diabetes Research Foundation, India
- Expertise
- Medicine
- Biochemistry and Chemical Biology
- Cancer Biology
- Cell Biology
- Developmental Biology
- Epidemiology and Global Health
- Genetics and Genomics
- Immunology and Inflammation
- Neuroscience
- Stem Cells and Regenerative Medicine
- Research focus
- disease biology
- diabetes
- aging
- omnics
- calcium signaling
- endocrine disruptors
- probiotics
- molecular medicine
-
Victoria L Bautch
University of North Carolina, United States
- Expertise
- Cell Biology
- Developmental Biology
- Research focus
- growth and interactions of cells
- blood vessel formation
-
Patrícia Beldade
University of Lisbon, Portugal
- Expertise
- Evolutionary Biology
- Developmental Biology
- Ecology
- Genetics and Genomics
- Research focus
- eco-evo-devo
- phenotypic variation
- developmental plasticity
- pigmentation patterns
- evolutionary novelty
- genetics of diversification
- butterfly wing patterns
-
Hugo J Bellen
Baylor College of Medicine, United States
- Expertise
- Neuroscience
- Developmental Biology
- Genetics and Genomics
- Research focus
- neurobiology
- human neurological disease
- Alzheimer's disease
- Parkinson's disease
- diagnosis of human genetic diseases
- fly technology
- CRIMIC
- MiMIC
- Experimental organism
- D. melanogaster
- mouse
-
Dominique Bergmann
Stanford University, United States
- Expertise
- Developmental Biology
- Plant Biology
- Research focus
- asymmetric division
- cell fate
- stomata
- cell polarity
- Experimental organism
- A. thaliana
- Brachypodium
-
Anita Bhattacharyya
University of Wisconsin, Madison, United States
- Expertise
- Developmental Biology
- Neuroscience
- Stem Cells and Regenerative Medicine
- Research focus
- neural development
- neurodevelopmental disorders
- neurogenesis
- iPSCs
- Down syndrome
- intellectual disability
- Experimental organism
- human
-
Joshua Brickman
Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Denmark
- Expertise
- Chromosomes and Gene Expression
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- embryonic stem cells
- endoderm
- pluripotency
- lineage priming
- transcription factors
- Experimental organism
- mouse
- Xenopus
-
Caroline E Burns
Boston Children's Hospital, United States
- Expertise
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- cardiopharyngeal
- cardiovascular disease modeling
- cardiac development
- cardiac function
- cardiovascular regeneration
- cardiomyocyte proliferation
- Experimental organism
- zebrafish
-
Michael Buszczak
UT Southwestern Medical Center, United States
- Expertise
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- stem cells
- germ cells
- ribosomes
- mRNA translation
- chromatin
- DNA damage
- meiosis
- Experimental organism
- D. melanogaster
- human
-
Xin Chen
Johns Hopkins University, United States
- Expertise
- Developmental Biology
- Chromosomes and Gene Expression
- Research focus
- germ cells
- stem cells
- asymmetric cell division
- histones
- epigenetics
- transcription
- Experimental organism
- C. elegans
- D. melanogaster
-
Ariel Chipman
The Hebrew University of Jerusalem, Israel
- Expertise
- Developmental Biology
- Evolutionary Biology
- Research focus
- segmentation
- Cambrian explosion
- evo-devo
- body plan evolution
- head evolution
- molting
- Experimental organism
- arthropods
-
Luisa Cochella
Johns Hopkins University School of Medicine, United States
- Expertise
- Chromosomes and Gene Expression
- Developmental Biology
- Genetics and Genomics
- Research focus
- microRNAs
- transcription factors
- chromatin
- cell diversification
-
Graeme W Davis
University of California, San Francisco, United States
- Expertise
- Developmental Biology
- Neuroscience
- Research focus
- neurodegeneration
- neural development
- synaptic transmission
- plasticity
- Experimental organism
- D. melanogaster
-
Filippo Del Bene
Institut de la Vision, France
- Expertise
- Developmental Biology
- Neuroscience
- Genetics and Genomics
- Research focus
- zebrafish
- visual system
- optogenetics
- neural circuits
- behavior
- brain function
- genome editing
-
Danelle Devenport
Princeton University, United States
- Expertise
- Cell Biology
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- cell polarity
- planar cell polarity
- epidermis
- skin
- oriented cell divisions
- morphogenesis
- epithelia
- Experimental organism
- mammals
-
Chris Q Doe
HHMI, University of Oregon, United States
- Expertise
- Developmental Biology
- Neuroscience
- Research focus
- Drosophila
- neural development
- neural circuit formation
- neural stem cells
- Experimental organism
- D. melanogaster
- C. elegans
-
Stephen C Ekker
Mayo Clinic, United States
- Expertise
- Developmental Biology
- Biochemistry and Chemical Biology
- Research focus
- gene editing
- morpholinos
- transposons
- mitochondria
- health engineering
- Experimental organism
- zebrafish
-
John Ewer
Universidad de Valparaiso, Chile
- Expertise
- Developmental Biology
- Neuroscience
- Genetics and Genomics
- Medicine
- Research focus
- animal behaviour
- neuropeptides
- circadian clocks
- insect endocrinology
- Experimental organism
- D. melanogaster
-
Vilaiwan M Fernandes
University College London, United Kingdom
- Expertise
- Neuroscience
- Developmental Biology
- Genetics and Genomics
- Cell Biology
- Research focus
- glial biology
- glia-neuron interactions
- developmental neurobiology
- visual system
- inter-cellular signalling
- retinotopy
- Experimental organism
- drosophila
-
Joseph G Gleeson
The Rockefeller University, United States
- Expertise
- Medicine
- Neuroscience
- Developmental Biology
- Research focus
- neurodevelopmental disease
- brain development
- neurogenetics
- autism
- epilepsy
- intellectual disability
- organoid
- stem cells
- genomics
- bioinformatics
- Experimental organism
- human
- mouse
-
Ilona C Grunwald Kadow
Technical University of Munich, Germany
- Expertise
- Neuroscience
- Genetics and Genomics
- Developmental Biology
- Research focus
- circuit neuroscience
- behavior
- in vivo imaging
- chemosensation
- olfactory system
- neuromodulation
- metabolism
- internal state
- Experimental organism
- D. melanogaster
- mouse
-
Richard P Harvey
The Victor Chang Cardiac Research Institute, Australia
- Expertise
- Cell Biology
- Chromosomes and Gene Expression
- Developmental Biology
- Genetics and Genomics
- Stem Cells and Regenerative Medicine
- Research focus
- cardiovascular
- stem cells
- developmental biology
- tissue regeneration
- fibrosis
- single cell biology
- Experimental organism
- mouse
- human
- zebrafish
-
P Robin Hiesinger
Institute for Biology Free University Berlin, Germany
- Expertise
- Cell Biology
- Computational and Systems Biology
- Developmental Biology
- Genetics and Genomics
- Neuroscience
- Research focus
- brain development
- synapse
- neurogenetics
- membrane trafficking
- Drosophila
- neurodegeneration
- computational modelling
- live-cell imaging
- Experimental organism
- D. melanogaster
- organoids
-
Oliver Hobert
Columbia University, United States
- Expertise
- Developmental Biology
- Neuroscience
- Research focus
- microRNAs
- epigenetics
- developmental neurobiology
- Experimental organism
- C. elegans
-
Valerie Horsley
Yale University, United States
- Expertise
- Cell Biology
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- epithelial stem cells
- adipocyte stem cells
- adipose tissue
- epithelial-mesenchymal interactions
- mechanical regulation of tissues
- tissue regeneration
-
Patrick J Hu
Vanderbilt University School of Medicine, United States
- Expertise
- Medicine
- Developmental Biology
- Genetics and Genomics
- Research focus
- signal transduction
- genetics
- development
- aging
- cancer
- endoplasmic reticulum homeostasis
- dauer
- Experimental organism
- C. elegans
-
Maneesha S Inamdar
Jawaharlal Nehru Centre for Advanced Scientific Research, India
- Expertise
- Developmental Biology
- Cell Biology
- Stem Cells and Regenerative Medicine
- Research focus
- pluripotent stem cells
- hematopoiesis
- vascular
- organelles
- mitochondria
- vesicular trafficking
- cytoskeleton
- protein sorting
-
Arezu Jahani-Asl
McGill University, Canada
- Expertise
- Cancer Biology
- Cell Biology
- Developmental Biology
- Research focus
- glioblastoma
- stem cells
- mitochondria
- transcription
- mental retardation
- neurodegeneration
- cancer
- Experimental organism
- mouse
-
Pankaj Kapahi
Buck Institute for Research on Aging, United States
- Expertise
- Biochemistry and Chemical Biology
- Developmental Biology
- Research focus
- aging
- age-related diseases
- nutrient signaling
- metabolism
- inflammation
- Experimental organism
- C. elegans
- D. melanogaster
- E. coli
- mouse
-
Koichi Kawakami
National Institute of Genetics, Japan
- Expertise
- Developmental Biology
- Genetics and Genomics
- Neuroscience
- Research focus
- organogenesis
- disease models
- biotechnology
- optogenetics
- transposable elements
- behavior
- brain function
- neural circuits
- Experimental organism
- zebrafish
-
Elisabeth Knust
Max Planck Institute of Molecular Cell Biology and Genetics, Germany
- Expertise
- Developmental Biology
- Research focus
- Drosophila
- cell polarity
- epithelia
- adhesion
- morphogenesis
- trafficking
- retinal development
- retinal degeneration
- Experimental organism
- D. melanogaster
-
Paschalis Kratsios
University of Chicago, United States
- Expertise
- Developmental Biology
- Genetics and Genomics
- Neuroscience
- Research focus
- neuronal development
- transcription factors
- chromatin factors
- neuronal identity
- genetics
- Experimental organism
- C. elegans
- mouse
-
T Rajendra Kumar
University of Colorado, United States
- Expertise
- Cell Biology
- Developmental Biology
- Medicine
- Research focus
- reproductive endocrinology
- reproductive biology
- pituitary
- testis
- ovary
- Experimental organism
- mouse
-
Shigehiro Kuraku
National Institute of Genetics, Japan
- Expertise
- Evolutionary Biology
- Genetics and Genomics
- Developmental Biology
- Research focus
- molecular evolution
- gene family evolution
- developmental roles of duplicated genes
- early vertebrate genome evolution
- Experimental organism
- reptiles
- cyclostomes
- chondrichthyans
-
Carole LaBonne
Northwestern University, United States
- Expertise
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- neural crest
- stem cells
- Experimental organism
- Xenopus
-
Cristina Lo Celso
Imperial College London, United Kingdom
- Expertise
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- hematopoietic stem cell function
- intravital microscopy
- hematopoietic system
-
Pablo A Manavella
Instituto de Agrobiotecnología del Litoral , Argentina
- Expertise
- Plant Biology
- Chromosomes and Gene Expression
- Genetics and Genomics
- Developmental Biology
- Research focus
- small RNA
- microRNAs
- RNA biology
- chromatin
- epigenetics
- transposable elements
- gene silencing
- miRNA biogenesis
- Experimental organism
- A. thaliana
-
Juan P Martinez-Barbera
University College London, United Kingdom
- Expertise
- Medicine
- Cancer Biology
- Developmental Biology
- Research focus
- brain
- pituitary
- tumour and cancer
- embryos
- cell senescence
- senescence-associate secretory phenotype (SASP)
- senolytic
- Experimental organism
- mouse
-
Margaret M McCarthy
University of Maryland School of Medicine, United States
- Expertise
- Developmental Biology
- Immunology and Inflammation
- Neuroscience
- Research focus
- steroids
- hypothalamus
- social behaviour
- sex differences
- neuroimmunology
- neuroendocrinology
- Experimental organism
- rat
- mouse
-
Sigolène M Meilhac
Imagine-Institut Pasteur, France
- Expertise
- Developmental Biology
- Research focus
- morphogenesis
- patterning
- left-right asymmetry
- heart development
- cardiac cell lineages
- congenital heart defect
- mouse genetics
- Experimental organism
- mouse
-
Simón Méndez-Ferrer
University of Cambridge, United Kingdom
- Expertise
- Stem Cells and Regenerative Medicine
- Developmental Biology
- Cancer Biology
- Medicine
- Research focus
- haematopoietic stem cell niche
- mesenchymal stem cells
- myeloproliferative neoplasms
- acute myeloid leukemia
- neuroimmunology
-
Binyam Mogessie
University of Bristol, United Kingdom
- Expertise
- Cell Biology
- Developmental Biology
- Chromosomes and Gene Expression
- Research focus
- meiosis
- mitosis
- oocytes
- actin
- microtubules
- chromosome segregation
- chromosome cohesion
- chromosome organisation
- kinetochores
- aneuploidy
- fertility
- Experimental organism
- mouse
- human
- pig
-
Marcos Nahmad
Centre for Research and Advanced Studies, Mexico
- Expertise
- Computational and Systems Biology
- Developmental Biology
- Genetics and Genomics
- Physics of Living Systems
- Research focus
- growth control
- drosophila genetics
- developmental patterning
- mathematical modelling
-
Phil Newmark
Morgridge Institute for Research, University of Wisconsin-Madison, United States
- Expertise
- Developmental Biology
- Microbiology and Infectious Disease
- Research focus
- Planarian
- regeneration
- Schistosoma
- germ cells
-
Roel Nusse
Stanford University, United States
- Expertise
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- wnt signaling
- stem cells
- tissue repair
- Experimental organism
- mouse
-
Tatjana Piotrowski
Stowers Institute for Medical Research, United States
- Expertise
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- sensory organ development and regeneration
- morphogenesis
- transcriptional regulation of development and regeneration
- cell migration
- cell lineage
- developmental neurobiology
- Experimental organism
- zebrafish
-
Samuel Pleasure
University of California, San Francisco, United States
- Expertise
- Medicine
- Developmental Biology
- Neuroscience
- Research focus
- circuit development
- hippocampus
- cerebral cortex
- epilepsy
- human
- forebrain development
- autoimmune encephalitis
- morphogenic signals
- mouse
- multiple sclerosis
-
Douglas Portman
University of Rochester, United States
- Expertise
- Developmental Biology
- Neuroscience
- Research focus
- neurogenetics
- behavioral genetics
- behavioral plasticity
- hypothamalus sex differences
- neuronal development
- Experimental organism
- C. elegans
-
Jeremy Reiter
University of California, San Francisco, United States
- Expertise
- Cell Biology
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- cilia
-
Sarah Russell
Peter MacCallum Cancer Centre, Australia
- Expertise
- Cell Biology
- Developmental Biology
- Immunology and Inflammation
- Research focus
- cell fate determination
- T cells
- cell polarity
- synapse
- asymmetric cell division
- Scribble
- Experimental organism
- mouse
-
Rebecca M Sappington
Wake Forest School of Medicine, United States
- Expertise
- Medicine
- Neuroscience
- Immunology and Inflammation
- Developmental Biology
- Research focus
- retina
- optic nerve
- neurodegeneration
- glia
- neuroinflammation
- regeneration
- axon
- cytokine/chemokine
-
Oren Schuldiner
Weizmann Institute of Science, Israel
- Expertise
- Neuroscience
- Developmental Biology
- Research focus
- neural development
- neuronal remodeling
- axon pruning
- circuit formation
- developmental axon regrowth
- mushroom body
-
James R Sellers
National Heart, Lung and Blood Institute, National Institutes of Health, United States
- Expertise
- Biochemistry and Chemical Biology
- Cell Biology
- Developmental Biology
- Research focus
- myosin
-
Sonia Sen
Tata Institute for Genetics and Society, India
- Expertise
- Developmental Biology
- Neuroscience
- Stem Cells and Regenerative Medicine
- Research focus
- neural stem cells
- neural circuits
- evo-devo
- Drosophila
- mosquito
- Experimental organism
- D. melanogaster
-
Jiwon Shim
Hanyang University, South Korea
- Expertise
- Cell Biology
- Developmental Biology
- Genetics and Genomics
- Immunology and Inflammation
- Research focus
- hematopoiesis
- innate immunity
- hemocyte
- development
- signaling
- inter-organ communication
- Experimental organism
- D. melanogaster
-
Roy V Sillitoe
Baylor College of Medicine, United States
- Expertise
- Neuroscience
- Developmental Biology
- Research focus
- cerebellum
- dystonia
- tremor
- electrophysiology
- mouse genetics
- development
- Experimental organism
- mouse
-
Mahendra Sonawane
Tata Institute of Fundamental Research, India
- Expertise
- Cell Biology
- Developmental Biology
- Research focus
- morphogenesis
- epithelial organisation
- epithelial cell polarity
- cytoskeleton and membrane projections
- epidermis development
- Experimental organism
- zebrafish
-
Pablo H Strobl-Mazzulla
Instituto Tecnológico de Chascomús, Argentina
- Expertise
- Cell Biology
- Developmental Biology
- Research focus
- vertebrate development
- microRNAs
- epigenetics
- neural crest
- placodes
-
Shahragim Tajbakhsh
Institut Pasteur, France
- Expertise
- Developmental Biology
- Research focus
- myogenesis
- gene regulatory networks
- regulation of myogenic stem cell emergence
- embryology and adult muscle development and regeneration
- Experimental organism
- chicken
- human
- mouse
-
Owen Tamplin
University of Wisconsin-Madison, United States
- Expertise
- Genetics and Genomics
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- hematopoeitic stem cells
- microenvironment
- zebrafish
- blood development
-
Kristin Tessmar-Raible
University of Vienna, Austria
- Expertise
- Cell Biology
- Developmental Biology
- Ecology
- Evolutionary Biology
- Genetics and Genomics
- Neuroscience
- Research focus
- chronobiology
- marine
- photobiology
- rhythms
- clocks
- physiology
- Experimental organism
- platynereis
- clunio
- danio
- medakafish
- oryzias
-
Fadel Tissir
University of Louvain, Belgium
- Expertise
- Developmental Biology
- Neuroscience
- Research focus
- neural progenitors
- neuronal migration
- polarity
- axon guidance
- neurodevelopmental disorders
- ciliogenesis
- cortical malformations
- gene/genome editing
- Experimental organism
- mouse
-
Ivan Velasco
Universidad Nacional Autónoma de México, Mexico
- Expertise
- Developmental Biology
- Neuroscience
- Stem Cells and Regenerative Medicine
- Research focus
- embryonic stem cells
- induced pluripotent stem cells
- neural stem cells
- CNS development
- Parkinson's disease
- animal models of neurological diseases
- cell grafting
- axonal guidance
- regeneration
-
Pablo Wappner
Instituto Leloir, Argentina
- Expertise
- Cell Biology
- Developmental Biology
- Research focus
- cell differentiation
- signaling pathways
- hypoxia
- autophagy
- adaptation to stress
- Experimental organism
- drosophila
-
Tanya T Whitfield
University of Sheffield, United Kingdom
- Expertise
- Developmental Biology
- Research focus
- sensory placodes
- inner ear
- organogenesis
- cell signalling
- Experimental organism
- zebrafish
-
Doris Wu
National Institutes of Health, Section on Sensory Cell Regeneration and Development, United States
- Expertise
- Neuroscience
- Developmental Biology
- Research focus
- inner ear development
- vestibular and cochlear patterning and development
- Experimental organism
- chicken
- mouse
- zebrafish
-
Jian Xu
University of Texas Southwestern Medical Center, United States
- Expertise
- Cancer Biology
- Chromosomes and Gene Expression
- Developmental Biology
- Genetics and Genomics
- Stem Cells and Regenerative Medicine
- Research focus
- hematopoiesis
- erythropoiesis
- myeloid leukemia
- epigenetics
- transcription regulation
- enhancer
- metabolism
- Experimental organism
- human
- mouse
-
Yukiko M Yamashita
HHMI, University of Michigan, United States
- Expertise
- Cell Biology
- Developmental Biology
- Chromosomes and Gene Expression
- Stem Cells and Regenerative Medicine
- Research focus
- stem cell niche
- asymmetric cell division
- satellite DNA
- germline immortality
- ribosomal DNA
- Experimental organism
- D. melanogaster
-
Wei Yan
University of California, Los Angeles, United States
- Expertise
- Developmental Biology
- Genetics and Genomics
- Medicine
- Research focus
- fertility
- germ cells
- reproduction
- epigenetic inheritance
- epigenomics
- noncoding RNAs
- post-transcriptional regulation
-
Karina Yaniv
Weizmann Institute of Science, Israel
- Expertise
- Developmental Biology
- Stem Cells and Regenerative Medicine
- Research focus
- angiogenesis
- lymphatic
- vascular
- organogenesis
- Experimental organism
- mouse
- zebrafish
-
Hong Zhang
Institute of Biophysics Chinese Academy of Sciences, China
- Expertise
- Cell Biology
- Developmental Biology
- Research focus
- autophagy
- lysosome
- membrane contact
- Experimental organism
- C. elegans