Impaired fast-spiking interneuron function in a genetic mouse model of depression

  1. Jonas-Frederic Sauer
  2. Michael Strüber
  3. Marlene Bartos  Is a corresponding author
  1. Albert-Ludwigs-Universität Freiburg, Germany

Abstract

Rhythmic neuronal activity provides a frame for information coding by co-active cell assemblies. Abnormal brain rhythms are considered as potential pathophysiological mechanisms causing mental disease, but the underlying network defects are largely unknown. We find that mice expressing truncated Disrupted-in-Schizophrenia 1 (Disc1), which mirror a high-prevalence genotype for human psychiatric illness, show depression-related behavior. Theta and low-gamma synchrony in the prelimbic cortex (PrlC) is impaired in Disc1 mice and inversely correlated with the extent of behavioural despair. While weak theta activity is driven by the hippocampus, disturbance of low-gamma oscillations is caused by local defects of parvalbumin (PV)-expressing fast-spiking interneurons (FS-INs). The number of FS-INs is reduced, they receive fewer excitatory inputs, and form fewer release sites on targets. Computational analysis indicates that weak excitatory input and inhibitory output of FS-INs may lead to impaired gamma oscillations. Our data link network defects with a gene mutation underlying depression in humans.

Article and author information

Author details

  1. Jonas-Frederic Sauer

    Physiologisches Institut I, Systemic and Cellular Neurophysiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  2. Michael Strüber

    Physiologisches Institut I, Systemic and Cellular Neurophysiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  3. Marlene Bartos

    Physiologisches Institut I, Systemic and Cellular Neurophysiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    For correspondence
    marlene.bartos@physiologie.uni-freiburg.de
    Competing interests
    Marlene Bartos, Reviewing editor, eLife.

Reviewing Editor

  1. Indira M Raman, Northwestern University, United States

Ethics

Animal experimentation: All in vivo and in vitro examinations were performed in agreement with national legislation and institutional regulations (license nr: G-13/25; X-10/18S) approved by the 'Regierungspräsidium' Freiburg.

Version history

  1. Received: September 30, 2014
  2. Accepted: February 27, 2015
  3. Accepted Manuscript published: March 3, 2015 (version 1)
  4. Version of Record published: March 26, 2015 (version 2)

Copyright

© 2015, Sauer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,665
    views
  • 939
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonas-Frederic Sauer
  2. Michael Strüber
  3. Marlene Bartos
(2015)
Impaired fast-spiking interneuron function in a genetic mouse model of depression
eLife 4:e04979.
https://doi.org/10.7554/eLife.04979

Share this article

https://doi.org/10.7554/eLife.04979

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.