Evolution takes a less-than-optimal route

Scientists test how bacteria adapt to specific conditions where there is an obvious evolutionary solution.

Colony of Escherichia coli seen under the microscope (false color). Image credit: Stewart EJ, Madden R, Paul G, Taddei F (CC BY-SA 3.0)

Predicting how viruses and bacteria evolve remains a challenge. The ability to anticipate when and how bacteria might develop drug resistance would make treating life-threatening diseases easier and could potentially help prevent drug resistance altogether. Studying bacterial evolution under different conditions and cataloguing all possible DNA mutations that allow these bacteria to survive are crucial steps in predicting the appearance of drug resistance.

Studies have revealed that bacteria can adapt to sources of stress, such as antibiotics, in different ways – each involving mutations in distinct genes. However, not all the mutations provide the same benefits to the organism, and the factors that influence how bacteria will adapt are unclear.

Now, Rodrigues and Shakhnovich have used a new approach to push the adaptation ability of the bacterium Escherichia coli to the limit. First, they genetically engineered different E. coli strains by introducing distinct mutations to an enzyme the bacterium needs to make DNA. These mutations make the resulting strains dependent on external molecules to synthesize new DNA. Next, the cells were grown in conditions where the supply of these DNA precursors was progressively decreased, forcing them to adapt. The obvious way for bacteria to adapt to these conditions would be to ‘revert’ the mutations that Rodrigues and Shakhnovich introduced in the first place. By using this approach, Rodrigues and Shakhnovich were able to test how often the obvious evolutionary solution happens compared with presumably less-preferred alternative routes.

In rare cases, a specific mutation did restore the activity of the enzyme that enabled DNA synthesis. However, in most cases the bacteria found a different evolutionary solution whereby they all adapt to the decrease in external DNA precursors in the same way, but not by reverting the original mutation. Instead, further mutations disrupt the activity of two metabolic genes, allowing the cells to use the external DNA precursors more efficiently, and keep building DNA. These cells are therefore able to survive even when the levels of the external DNA components are very low, but they will die in the complete absence of these precursor molecules.

This evolutionary solution leads to a non-optimal effect: mutations that restore the activity of the original enzyme, which are the best solution when the two metabolic genes are intact, are no longer as effective. This finding represents a clear example of interactions between genes determining evolutionary outcomes. Rodrigues and Shakhnovich showed that, since it is more likely for a random mutation to disrupt a gene than to revert a previous mutation, adaptations that are less-than-optimal but still work might predominate simply because they happen faster.

Understanding why certain evolutionary adaptations prevail is an important step in predicting evolution and may lead to breakthroughs in many areas. For example, if scientists can identify mutations likely to make bacteria resistant to drugs, it may be possible to act proactively against the bacterial strains that carry those mutations. Eventually, if the factors that lead to specific adaptations are known, it may be possible to exploit this knowledge to create weaknesses in the bacteria’s own defences.