Stick together and take a deep breath

Forming the nerve cell connections that regulate the specific pattern of breathing relies on a set of transcription factors called Hox5.

Microscopy image showing the connections (blue and red) between phrenic motor neurons (green) and other neurons that regulate breathing. Image credit: Alicia Vagnozzi (CC BY 4.0)

In mammals, air is moved in and out of the lungs by a sheet of muscle called the diaphragm. When this muscle contracts air gets drawn into the lungs and as the muscle relaxes this pushes air back out. Movement of the diaphragm is controlled by a group of nerve cells called motor neurons which are part of the phrenic motor column (or PMC for short) that sits within the spinal cord. The neurons within this column work together with nerve cells in the brain to coordinate the speed and duration of each breath.

For the lungs to develop normally, the neurons that control how the diaphragm contracts need to start working before birth. During development, motor neurons in the PMC cluster together and connect with other nerve cells involved in breathing. But, despite their essential role, it is not yet clear how neurons in the PMC develop and join up with other nerve cells.

Now, Vagnozzi et al. show that a set of genes which make the transcription factor Hox5 control the position and organization of motor neurons in the PMC. Transcription factors work as genetic switches, turning sets of genes on and off. Vagnozzi et al. showed that removing the Hox5 transcription factors from motor neurons in the PMC changed their activity and disordered their connections with other breathing-related nerve cells. Hox5 transcription factors regulate the production of proteins called cadherins which join together neighboring cells. Therefore, motor neurons lacking Hox5 were unable to make enough cadherins to securely stick together and connect with other nerve cells.

Further experiments showed that removing the genes that code for Hox5 caused mice to have breathing difficulties in the first two weeks after birth. Although half of these mutant mice were eventually able to breathe normally, the other half died within a week. These breathing defects are reminiscent of the symptoms observed in sudden infant death syndrome (also known as SIDS).

Abnormalities in breathing occur in many other diseases, including sleep apnea, muscular dystrophy and amyotrophic lateral sclerosis (ALS). A better understanding of how the connections between nerve cells involved in breathing are formed, and the role of Hox5 and cadherins, could lead to improved treatment options for these diseases.