Opioid drugs are commonly prescribed due to their powerful painkilling properties. However, when misused, these compounds can cause breathing to become dangerously slow and shallow: between 1999 and 2018, over 400,000 people died from opioid drug overdoses in the United States alone.
Exactly how the drugs affect breathing remains unclear. What is known is that opioids work by binding to specific receptors at the surface of cells, an event which has a ripple effect on many biochemical pathways. Amongst these, research published in 2005 identified the β-arrestin 2 pathway as being responsible for altering breathing. This spurred efforts to find opioid-like drugs that would not interfere with the pathway, retaining their ability relieve pain but without affecting breathing. However, new evidence is now shedding doubt on the conclusions of this study.
In response, Bachmutsky, Wei et al. attempted to replicate the original 2005 findings. Mice with carefully controlled genetic background were used, in which the genes for the β-arrestin 2 pathway were either present or absent. Both groups of animals had similar breathing patterns under normal conditions and after receiving an opioid drug. The results suggest β-arrestin 2 is not involved in opioid-induced breathing suppression.
These findings demonstrate that research to develop opioid-like drugs that do not affect the β-arrestin 2 pathway are based on a false premise. Precisely targeting a drug’s molecular mechanisms to avoid suppressing breathing may still be a valid approach, but more research is needed to identify the right pathways.