Research: Ecology in the genomics era of a degraded planet
Ecology is the study of all the different types of interactions that shape the distribution and abundance of organisms on planet Earth. As such, ecological interactions shape the stream of genetic information that flows forward in time, from generation to generation, and manifests itself as Darwinian evolution. Organisms move this genetic stream forward, with their success being measured by the number of successfully fledged grandchildren they have. However, organisms are not passive conduits for this information to flow through: rather, they are the FedEx employees of the genetic stream, finding new ways to make their deliveries to the next generation more successful by making them more timely, more reliable and more economical. And organisms must be successful and pass along their genetic material, otherwise the stream will evaporate and they will become extinct.
This biological legacy is a vast and unique library, and if we are not careful, we will end up burning it.
By the end of this century, extinction will unfortunately be the likely fate for most of the non-domesticated species on the planet. This is because all organisms require suitable habitats, and Homo sapiens currently commands the lion’s share of the best habitats—such as the fresh water, the ice-free land and the net carbon that is fixed by plants—as a consequence of our species having more than seven billion members. While humans have currently attained ‘peak baby’, with the number of children per woman now declining, it is probable that an additional three billion humans will be added to the world’s population by the end of the century as a consequence of the age structure and reproductive potential of the existing population (Rosling, 2012). Under such pressure from our resource-hungry species, it is hard to imagine that many of the other inhabitants of our planet will still be here unless they either directly feed, clothe, house or provide fuel for humans, or if they parasitize humans and the species we have domesticated.
Native habitats have long provided services that we have taken for granted: they purify our water, they stabilize the composition of the atmosphere, and they control floods (Kremen, 2005). They also provide less tangible services—natural habitats are, for example, a source of solace, inspiration, replenishment, comfort and entertainment. Moreover, with on-going advances in genomic tools, biologists can argue more forcefully than ever before that Nature is indeed the Mother of Invention. However, we need to recognize the opportunities that are being opened up by new biological techniques and knowledge, and we must do our best not to squander these opportunities.
Our planet’s biological legacy—including all the different habitats on Earth and all the different species that live in them—is the result of eons of natural selection. In the innumerable as-yet unsequenced genomes of the natural world lie the solutions to the problems that life has faced in the past. This biological legacy is a vast and unique library, and if we are not careful, we will end up burning it. The genomics revolution has fundamentally altered how we can exploit the genetic information in this library: it is as if we have replaced the genetic equivalent of a hard copy encyclopaedia with something like Wikipedia, which means that individual genes can now be moved and manipulated in a variety of innovative ways.
In eLife we are striving to publish outstanding articles that illuminate both the peril and the promise of this time in ecological research. Examples of shedding new light on perils include estimating the extinction risks faced by sharks and rays (Dulvy et al., 2014) and sequencing the genome of the pathogen responsible for the Irish potato famine (Yoshida et al., 2013). Other articles have illustrated the awesome power of genomic tools, phylogenetic reconstructions, neurobiological imaging and modelling, as well as old-fashioned morphology and field work, in topics as diverse as the evolution of photosynthesis, the remarkable ability of ants to carry heavy loads, how moths find optimal host plants for their offspring, how plants recruit insects as body guards and how viruses hitchhike on insect vectors to find new hosts. We have also published articles on the evolution of multicellularity in systems as diverse as the choanoflagellates, yeast, protists and bacteria.
In eLife we are striving to publish outstanding articles that illuminate both the peril and the promise of this time in ecological research.
As Nature comes more and more under duress, the need to understand and use these triumphs of natural history will increase. The public that funds much of our research is also keen to learn more about what can be done to protect our biological legacy. So, ecologists of the world, send us your best work and together we can make a compelling case for preserving the natural world and all who live in it.
References
Article and author information
Author details
Publication history
Copyright
© 2014, Baldwin
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,463
- views
-
- 105
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Ecology
Organisms require dietary macronutrients in specific ratios to maximize performance, and variation in macronutrient requirements plays a central role in niche determination. Although it is well recognized that development and body size can have strong and predictable effects on many aspects of organismal function, we lack a predictive understanding of ontogenetic or scaling effects on macronutrient intake. We determined protein and carbohydrate intake throughout development on lab populations of locusts and compared to late instars of field populations. Self-selected protein:carbohydrate targets declined dramatically through ontogeny, due primarily to declines in mass-specific protein consumption rates which were highly correlated with declines in specific growth rates. Lab results for protein consumption rates partly matched results from field-collected locusts. However, field locusts consumed nearly double the carbohydrate, likely due to higher activity and metabolic rates. Combining our results with the available data for animals, both across species and during ontogeny, protein consumption scaled predictably and hypometrically, demonstrating a new scaling rule key for understanding nutritional ecology.
-
- Ecology
- Evolutionary Biology
Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. Cacopsylla chinensis exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor CcTRPM regulate the transition from summer-form to winter-form in C. chinensis by impacting cuticle content and thickness. However, the underling neuroendocrine regulatory mechanism remains largely unknown. Bursicon, also known as the tanning hormone, is responsible for the hardening and darkening of the insect cuticle. In this study, we report for the first time on the novel function of Bursicon and its receptor in the transition from summer-form to winter-form in C. chinensis. Firstly, we identified CcBurs-α and CcBurs-β as two typical subunits of Bursicon in C. chinensis, which were regulated by low temperature (10 °C) and CcTRPM. Subsequently, CcBurs-α and CcBurs-β formed a heterodimer that mediated the transition from summer-form to winter-form by influencing the cuticle chitin contents and cuticle thickness. Furthermore, we demonstrated that CcBurs-R acts as the Bursicon receptor and plays a critical role in the up-stream signaling of the chitin biosynthesis pathway, regulating the transition from summer-form to winter-form. Finally, we discovered that miR-6012 directly targets CcBurs-R, contributing to the regulation of Bursicon signaling in the seasonal polyphenism of C. chinensis. In summary, these findings reveal the novel function of the neuroendocrine regulatory mechanism underlying seasonal polyphenism and provide critical insights into the insect Bursicon and its receptor.