1. Ecology
Download icon

Research: Ecology in the genomics era of a degraded planet

  1. Ian T Baldwin  Is a corresponding author
  1. Max Planck Institute for Chemical Ecology, Germany
  • Cited 2
  • Views 1,326
  • Annotations
Cite this article as: eLife 2014;3:e02394 doi: 10.7554/eLife.02394


Modern research in ecology draws upon a wide range of different techniques and can offer fresh insights on how to tackle a range of challenges facing the natural world.

Main text

Ecology is the study of all the different types of interactions that shape the distribution and abundance of organisms on planet Earth. As such, ecological interactions shape the stream of genetic information that flows forward in time, from generation to generation, and manifests itself as Darwinian evolution. Organisms move this genetic stream forward, with their success being measured by the number of successfully fledged grandchildren they have. However, organisms are not passive conduits for this information to flow through: rather, they are the FedEx employees of the genetic stream, finding new ways to make their deliveries to the next generation more successful by making them more timely, more reliable and more economical. And organisms must be successful and pass along their genetic material, otherwise the stream will evaporate and they will become extinct.

This biological legacy is a vast and unique library, and if we are not careful, we will end up burning it.

By the end of this century, extinction will unfortunately be the likely fate for most of the non-domesticated species on the planet. This is because all organisms require suitable habitats, and Homo sapiens currently commands the lion’s share of the best habitats—such as the fresh water, the ice-free land and the net carbon that is fixed by plants—as a consequence of our species having more than seven billion members. While humans have currently attained ‘peak baby’, with the number of children per woman now declining, it is probable that an additional three billion humans will be added to the world’s population by the end of the century as a consequence of the age structure and reproductive potential of the existing population (Rosling, 2012). Under such pressure from our resource-hungry species, it is hard to imagine that many of the other inhabitants of our planet will still be here unless they either directly feed, clothe, house or provide fuel for humans, or if they parasitize humans and the species we have domesticated.

Native habitats have long provided services that we have taken for granted: they purify our water, they stabilize the composition of the atmosphere, and they control floods (Kremen, 2005). They also provide less tangible services—natural habitats are, for example, a source of solace, inspiration, replenishment, comfort and entertainment. Moreover, with on-going advances in genomic tools, biologists can argue more forcefully than ever before that Nature is indeed the Mother of Invention. However, we need to recognize the opportunities that are being opened up by new biological techniques and knowledge, and we must do our best not to squander these opportunities.

Our planet’s biological legacy—including all the different habitats on Earth and all the different species that live in them—is the result of eons of natural selection. In the innumerable as-yet unsequenced genomes of the natural world lie the solutions to the problems that life has faced in the past. This biological legacy is a vast and unique library, and if we are not careful, we will end up burning it. The genomics revolution has fundamentally altered how we can exploit the genetic information in this library: it is as if we have replaced the genetic equivalent of a hard copy encyclopaedia with something like Wikipedia, which means that individual genes can now be moved and manipulated in a variety of innovative ways.

In eLife we are striving to publish outstanding articles that illuminate both the peril and the promise of this time in ecological research. Examples of shedding new light on perils include estimating the extinction risks faced by sharks and rays (Dulvy et al., 2014) and sequencing the genome of the pathogen responsible for the Irish potato famine (Yoshida et al., 2013). Other articles have illustrated the awesome power of genomic tools, phylogenetic reconstructions, neurobiological imaging and modelling, as well as old-fashioned morphology and field work, in topics as diverse as the evolution of photosynthesis, the remarkable ability of ants to carry heavy loads, how moths find optimal host plants for their offspring, how plants recruit insects as body guards and how viruses hitchhike on insect vectors to find new hosts. We have also published articles on the evolution of multicellularity in systems as diverse as the choanoflagellates, yeast, protists and bacteria.

In eLife we are striving to publish outstanding articles that illuminate both the peril and the promise of this time in ecological research.

As Nature comes more and more under duress, the need to understand and use these triumphs of natural history will increase. The public that funds much of our research is also keen to learn more about what can be done to protect our biological legacy. So, ecologists of the world, send us your best work and together we can make a compelling case for preserving the natural world and all who live in it.


  1. 1
  2. 2
  3. 3
  4. 4

Article and author information

Author details

  1. Ian T Baldwin, Senior Editor

    Max Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    Competing interests
    The author declares that no competing interests exist.

Publication history

  1. Version of Record published: February 11, 2014 (version 1)


© 2014, Baldwin

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,326
    Page views
  • 97
  • 2

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Epidemiology and Global Health
    Marta S Shocket et al.
    Research Article

    The temperature-dependence of many important mosquito-borne diseases has never been quantified. These relationships are critical for understanding current distributions and predicting future shifts from climate change. We used trait-based models to characterize temperature-dependent transmission of 10 vector–pathogen pairs of mosquitoes (Culex pipiens, Cx. quinquefascsiatus, Cx. tarsalis, and others) and viruses (West Nile, Eastern and Western Equine Encephalitis, St. Louis Encephalitis, Sindbis, and Rift Valley Fever viruses), most with substantial transmission in temperate regions. Transmission is optimized at intermediate temperatures (23–26°C) and often has wider thermal breadths (due to cooler lower thermal limits) compared to pathogens with predominately tropical distributions (in previous studies). The incidence of human West Nile virus cases across US counties responded unimodally to average summer temperature and peaked at 24°C, matching model-predicted optima (24–25°C). Climate warming will likely shift transmission of these diseases, increasing it in cooler locations while decreasing it in warmer locations.

    1. Ecology
    2. Microbiology and Infectious Disease
    Daniel Dar et al.
    Research Article

    Phenazines are natural bacterial antibiotics that can protect crops from disease. However, for most crops it is unknown which producers and specific phenazines are ecologically relevant, and whether phenazine biodegradation can counter their effects. To better understand their ecology, we developed and environmentally-validated a quantitative metagenomic approach to mine for phenazine biosynthesis and biodegradation genes, applying it to >800 soil and plant-associated shotgun-metagenomes. We discover novel producer-crop associations and demonstrate that phenazine biosynthesis is prevalent across habitats and preferentially enriched in rhizospheres, whereas biodegrading bacteria are rare. We validate an association between maize and Dyella japonica, a putative producer abundant in crop microbiomes. D. japonica upregulates phenazine biosynthesis during phosphate limitation and robustly colonizes maize seedling roots. This work provides a global picture of phenazines in natural environments and highlights plant-microbe associations of agricultural potential. Our metagenomic approach may be extended to other metabolites and functional traits in diverse ecosystems.