Range geography and temperature variability explain cross-continental convergence in range and phenology shifts in a model insect taxon

  1. Catherine Sirois-Delisle
  2. Susan CC Gordon  Is a corresponding author
  3. Jeremy Kerr
  1. University of Ottawa, Canada
4 figures, 6 tables and 1 additional file

Figures

Representation of temporal and geographical limits characterizing the ecological niche of a hypothetical odonate species.

Points show 250 individuals according to their Julian day of emergence, latitudinal position, and temperatures to which each individual is exposed. Points represent historical observations (T1), plus signs show observations following a shift toward earlier emergence dates after warming (T2a), and triangle symbols show observations following a shift toward higher latitudes after warming (T2b). Species could also shift both range and phenology in response to warming (T2c). Warm and cool colors show hot and cold temperatures, respectively.

Distribution of northern range limit shifts (A) kilometers and emergence phenology shift (B) Julian day of 76 European and North American odonate species between a recent time period (2008–2018) and a historical time period (1980–2002).

Anisoptera (dragonflies) are shown in pink, Zygoptera (damselflies) are shown in blue.

Figure 3 with 6 supplements
Relationship between range shifts and emergence phenology shifts among North American and European odonate species (N = 66; model R2 = 17.08 for generalized linear model [GLM], 14.9% for Markov Chain Monte Carlo generalized linear mixed model [MCMCglmm]).

For reference, the shaded area shows mean latitudinal range shifts of terrestrial taxa as reported by Lenoir et al. (calculated as the yearly mean dispersal rate of 1.11 ± 0.96 km per year over 38 years).

Figure 3—figure supplement 1
p-values and coefficients of 1000 generalized linear model (GLM) iterations testing whether range shifts as calculated from random datasets predict the range shifts measured in the study.

Each point shows the results of a single GLM model, with measured range shifts as the dependent variable and randomized range shifts as the independent variable.

Figure 3—figure supplement 2
Observed range shifts in km from the equator, against randomized predicted values according to four random datasets.

Points represent species, and each pane contains a different set of random data in calculations of randomized range shifts. There is no consistent relationship among 1000 iterations.

Figure 3—figure supplement 3
p-values and coefficients of 1000 generalized linear model (GLM) iterations testing whether phenology shifts as calculated from random datasets predict the phenology shifts measured in the study.

Each point shows the results of a single GLM model, with measured phenology shifts as the dependent variable and randomized phenology shifts as the independent variable.

Figure 3—figure supplement 4
Observed phenology shifts in Julian day, against randomized predicted values according to four random datasets.

Points represent species, and each pane contains a different set of random data in calculations of randomized phenology shifts. There is no consistent relationship among 1000 iterations.

Figure 3—figure supplement 5
Panels A and B show the trace and density estimates of a phylogenetic mixed effects model exploring the relationship between range and phenology shifts in North American and European odonates (N = 66).

150,000 iterations were run to produce these results. These plots verify model convergence and absence of autocorrelation within the explanatory variables.

Figure 3—figure supplement 6
Panels A and B show the trace and density estimates of a phylogenetic mixed effects model testing whether ecological traits, and geographic and climatic attributes predict range shifts in North American and European odonates (N = 76).

150,000 iterations were run to produce these results. Results of the best model, according to DIC, are shown here. These plots verify model convergence and absence of autocorrelation within the explanatory variables.

Richness of 76 odonate species sampled in North America and Europe in the historic period (1980–2002; panes A and C) and the recent period (2008–2018; panes B and D).

Species richness per 100 × 100 km quadrat is shown in panes A and B, while panes C and D show species richness per 200 × 200 km quadrat. Dark red indicates high species richness, while light pink indicates low species richness.

Tables

Table 1
Fixed effects estimates and associated statistics from the generalized linear model and generalized mixed effects model (accounting for phylogeny; for credible intervals, see Appendix 1—table 4) of the relationship between range shifts and emergence phenology change.

The continent term shows effects of the North American continent compared to the European continent as the reference level. N gives the number of species involved in the model, and an asterisk indicates statistical significance of the variable in question (p-value <0.05). The pseudo R2 type is Nagelkerke, 1991.

Phenology shift (N = 66)
GLMMCMCglmm
PredictorsEst.pPost.mp
(Intercept)0.120.530.120.53
Range shift−0.45<0.01*−0.45<0.01*
Continent−0.220.44−0.220.44
Model evaluation
AIC/DIC185.39185.43
Null model193.13193.12
Pseudo R217.08%14.90%
Table 2
Fixed effects estimates and associated statistics from the generalized linear model and generalized mixed effects model (accounting for phylogeny; for credible intervals, see Appendix 1—table 4) of drivers of odonate range shifts.

N indicates the number of modeled species, an asterisk indicates statistical significance of the variable in question, and a dash symbol shows that the variable was excluded from the final model. The pseudo R2 type is Nagelkerke, 1991. For the categorical variables breeding habitat type and range geography, we used lotic habitat type and Northern range as reference levels, respectively.

Range shift (N = 76)
GLMMCMCglmm
PredictorsEst.pPost.mp
(Intercept)−0.650.018−0.650.022
Widespread distribution0.340.320.340.31
Southern distribution0.950.0020.950.004
T° variability−0.380.0005−0.380.002
Model evaluation
AIC/DIC202.8202.9
Null model218.7218.7
Pseudo R226.60%23.70%
Phylogenetic signal
Pagel’s lambda (p)0.0057 (0.89)
Blomberg’s K (p)0.11 (0.47)
Appendix 1—table 1
Samples of 76 North American and European odonate species from between 1980 and 2018 followed our criteria for quality observation records for inclusion in our analysis of geographical shifts.

Species northern range limits (NRL) are shown in this table, as well as range limit shifts. All range limit values are shown in kilometers from the equator. We used the 10 most northern points of sampling in each time period to identify species’ NRL, as detailed in the Methods section of the main text.

SpeciesContinentNRL (1980–2002)NRL (2008–2018)NRL shift
Aeshna constrictaNorth America5500.815692.6191.79
Aeshna cyaneaEurope6880.397018.26137.87
Aeshna eremitaNorth America7527.817394.66–133.16
Aeshna grandisEurope7504.847607.68102.83
Aeshna interruptaNorth America7235.657286.8351.18
Aeshna junceaEurope7747.567812.1664.6
Aeshna mixtaEurope6566.186776.3210.12
Aeshna umbrosaNorth America6691.196209.63–481.55
Anax imperatorEurope6263.926548.57284.65
Anax juniusNorth America5539.315666.11126.8
Argia apicalisNorth America4922.175219.38297.22
Argia fumipennisNorth America5235.25168.12–67.08
Argia moestaNorth America5533.745301.98–231.77
Basiaeschna janataNorth America5649.435655.776.34
Brachytron pratenseEurope6737.426905.46168.04
Calopteryx maculataNorth America5329.565359.1329.57
Calopteryx virgoEurope7275.97549.35273.45
Ceriagrion tenellumEurope5900.555950.6350.08
Coenagrion hastulatumEurope7528.947651.51122.57
Coenagrion mercurialeEurope5913.575867.06–46.52
Coenagrion puellaEurope6904.76869.58–35.12
Coenagrion pulchellumEurope7076.457152.8176.36
Coenagrion resolutumNorth America7516.447408.7–107.73
Cordulegaster boltoniiEurope7237.437346.93109.49
Cordulia aeneaEurope7400.127434.0233.9
Cordulia shurtleffiiNorth America7499.827421.98–77.84
Enallagma antennatumNorth America5037.735347.01309.28
Enallagma basidensNorth America4768.614850.0581.44
Enallagma carunculatumNorth America5950.865592.47–358.38
Enallagma civileNorth America5322.595473.78151.19
Enallagma cyathigerumEurope7594.977733.06138.09
Enallagma ebriumNorth America6341.315907.69–433.62
Enallagma exsulansNorth America5655.945253.94–402
Enallagma hageniNorth America6113.975865.52–248.45
Enallagma signatumNorth America5208.925281.0972.17
Epitheca cynosuraNorth America5541.195582.5641.37
Erythemis simplicicollisNorth America52715292.6521.65
Erythromma najasEurope7171.877372.13200.25
Gomphus vulgatissimusEurope6890.767010.12119.37
Hetaerina americanaNorth America5044.415244.49200.08
Ischnura cervulaNorth America5973.575526.83–446.74
Ischnura hastataNorth America4725.074897.71172.65
Ischnura perparvaNorth America5608.925438.53–170.4
Ischnura positaNorth America5084.085143.7959.71
Ischnura pumilioEurope6213.776769.62555.85
Ischnura verticalisNorth America5579.685750.9171.22
Ladona juliaNorth America5908.685871.84–36.83
Lestes congenerNorth America6240.485803.75–436.74
Lestes disjunctusNorth America7294.757314.2619.51
Lestes dryasEurope6824.897108.33283.44
Lestes rectangularisNorth America5263.855552.64288.79
Lestes unguiculatusNorth America5803.916030.62226.71
Leucorrhinia dubiaEurope7675.727749.0173.29
Leucorrhinia hudsonicaNorth America7500.277446.85–53.42
Libellula depressaEurope6810.857015.37204.52
Libellula fulvaEurope6602.186882.5280.32
Libellula luctuosaNorth America5337.865320.1–17.76
Libellula pulchellaNorth America5556.315692.14135.83
Orthetrum coerulescensEurope6744.556903.01158.46
Pachydiplax longipennisNorth America5495.025467.11–27.92
Pantala flavescensNorth America5190.255510.15319.9
Perithemis teneraNorth America4929.385192.47263.09
Plathemis lydiaNorth America5539.415594.855.38
Platycnemis pennipesEurope6934.227125.72191.5
Pyrrhosoma nymphulaEurope7131.077313.37182.3
Rhionaeschna californicaNorth America5641.535458.21–183.32
Rhionaeschna multicolorNorth America55815477.34–103.66
Somatochlora metallicaEurope7718.677743.2124.54
Somatochlora semicircularisNorth America6533.025994.13–538.89
Sympetrum corruptumNorth America5585.685733.2147.52
Sympetrum danaeEurope7268.547565.29296.75
Sympetrum internumNorth America7179.457121.38–58.07
Sympetrum pallipesNorth America5655.655527.84–127.8
Sympetrum sanguineumEurope6663.436970.56307.13
Sympetrum striolatumEurope6972.227098.74126.52
Sympetrum vulgatumEurope6897.337274.78377.45
Appendix 1—table 2
Sixty-six species sampled across North America and Europe between 1980 and 2018 followed our criteria for quality observation records for inclusion in our analysis of emergence phenology shifts.

Mean phenological shifts (PS) are measured in the number of Julian days comparing both time periods, as estimated using the Weibull distribution (see Methods). We also report the number of 200 × 200 quadrats used to calculate phenology estimates per species.

SpeciesNumber of quadratsMean PS
Aeshna cyanea37–8.05
Aeshna grandis436.73
Aeshna juncea34–1.11
Aeshna mixta22–12.95
Aeshna umbrosa827.42
Anax imperator274.05
Anax junius19–12.21
Argia fumipennis8–3.39
Argia moesta11–7.62
Basiaeschna janata2–4.69
Brachytron pratense24–8.18
Calopteryx maculata15–4.14
Calopteryx virgo414.35
Ceriagrion tenellum14–3.88
Coenagrion hastulatum20–4.97
Coenagrion mercuriale115.80
Coenagrion puella33–1.00
Coenagrion pulchellum291.94
Coenagrion resolutum20.33
Cordulegaster boltonii344.08
Cordulia aenea31–7.72
Cordulia shurtleffii41.78
Enallagma basidens20.52
Enallagma carunculatum85.10
Enallagma civile111.82
Enallagma cyathigerum46–9.81
Enallagma ebrium7–1.34
Enallagma exsulans8–2.83
Enallagma hageni5–4.79
Enallagma signatum61.51
Epitheca cynosura4–8.82
Erythemis simplicicollis150.01
Erythromma najas35–4.82
Gomphus vulgatissimus12–9.14
Hetaerina americana6–10.15
Ischnura cervula310.65
Ischnura perparva28.85
Ischnura posita12–5.55
Ischnura pumilio14–0.97
Ischnura verticalis162.39
Ladona julia94.29
Lestes congener96.03
Lestes disjunctus410.48
Lestes dryas65.13
Lestes rectangularis120.81
Leucorrhinia dubia18–6.05
Leucorrhinia hudsonica4–13.17
Libellula depressa30–6.13
Libellula fulva16–2.50
Libellula luctuosa15–5.11
Libellula pulchella14–6.43
Orthetrum coerulescens224.11
Pachydiplax longipennis13–3.84
Perithemis tenera5–13.60
Plathemis lydia140.30
Platycnemis pennipes30–0.40
Pyrrhosoma nymphula39–19.40
Rhionaeschna californica2–8.41
Rhionaeschna multicolor4–11.68
Somatochlora metallica317.91
Sympetrum danae32–3.34
Sympetrum internum53.05
Sympetrum pallipes39.67
Sympetrum sanguineum28–13.30
Sympetrum vulgatum16–13.56
Appendix 1—table 3
Ecological and geographical traits of 76 North American and European odonate species used in this work.

Field guides (Cannings, 2002; Jones et al., 2008; Paulson, 2012) and existing trait databases (Powney et al., 2014; Waller et al., 2019) were used to build this dataset. Habitat type represents species’ breeding habitat and can have a value of lentic, lotic, or both types. Distribution shows the general geographic position of each species’ range, which can be widespread (W), southern (S), northern (N), southern and widespread (S–W), or northern and widespread (N–W). Oviposition type corresponds to egg laying inside plants (endophytic) as opposed to directly in water or on plants (exophytic). Body size is measured as body length in mm. In the case that body length was given as a maximum and minimum value, we used the average of both values.

SpeciesHabitatDistributionFlightOvipositionBody size
Aeshna constrictaBothW2.5Endophytic69
Aeshna cyaneaLenticS3Endophytic71.5
Aeshna eremitaBothN–W3Endophytic72.5
Aeshna grandisBothN4Endophytic73.5
Aeshna interruptaBothW3Endophytic66.5
Aeshna junceaLenticN4.5Endophytic75.5
Aeshna mixtaBothS2.5Endophytic60
Aeshna umbrosaBothW3Endophytic68.5
Anax imperatorLenticS2.5Endophytic76.5
Anax juniusBothS–W7Endophytic74
Argia apicalisBothS–W4Endophytic36.5
Argia fumipennisBothS–W3.5Endophytic31.5
Argia moestaLoticS–W3Endophytic39.5
Basiaeschna janataBothW1Endophytic59
Brachytron pratenseLenticS2Endophytic58.5
Calopteryx maculataLoticS–W3Endophytic48
Calopteryx virgoLoticW3.5Endophytic47
Ceriagrion tenellumBothS3Endophytic30
Coenagrion hastulatumLenticN2.5Endophytic32
Coenagrion mercurialeLoticS2.5Endophytic29.5
Coenagrion puellaLenticS3.5Endophytic34
Coenagrion pulchellumBothS2Endophytic36
Coenagrion resolutumLenticN–W2.5Endophytic30
Cordulegaster boltoniiLoticW3.5Endophytic77
Cordulia aeneaLenticS2Exophytic51
Cordulia shurtleffiiBothN–W2Exophytic46
Enallagma antennatumBothS–W2Endophytic30
Enallagma basidensBothS–W4.5Endophytic24.5
Enallagma carunculatumBothW3.5Endophytic31.5
Enallagma civileBothS–W3.5Endophytic33.5
Enallagma cyathigerumBothW3.5Endophytic32
Enallagma ebriumBothN–W2.5Endophytic31
Enallagma exsulansBothS–W3.5Endophytic34
Enallagma hageniBothN–W2.5Endophytic30
Enallagma signatumBothS–W2.5Endophytic32.5
Epitheca cynosuraBothS–W2.5Endophytic40.5
Erythemis simplicicollisBothS–W2.5Endophytic41
Erythromma najasBothS3Endophytic33
Gomphus vulgatissimusLoticS2Exophytic47.5
Hetaerina americanaLoticS–W5Endophytic42
Ischnura cervulaBothW6Endophytic27.5
Ischnura hastataLenticS–W3.5Endophytic24
Ischnura perparvaBothS–W5Endophytic26.5
Ischnura positaBothS–W3.5Endophytic25
Ischnura pumilioLenticS3Endophytic29
Ischnura verticalisBothW3.5Endophytic26.5
Ladona juliaLenticN–W2Endophytic41.5
Lestes congenerLenticW2.5Endophytic36.5
Lestes disjunctusBothW2.5Endophytic37.5
Lestes dryasLenticS2Endophytic37.5
Lestes rectangularisBothS–W2.5Endophytic45
Lestes unguiculatusBothW3Endophytic37.5
Leucorrhinia dubiaLenticN2.5Exophytic33.5
Leucorrhinia hudsonicaLenticN–W2Endophytic29.5
Libellula depressaLenticS2.5Exophytic43.5
Libellula fulvaLenticS2Exophytic43.5
Libellula luctuosaLenticS–W2.5Exophytic46
Libellula pulchellaBothW2.5Endophytic54.5
Orthetrum coerulescensLoticS3Exophytic40.5
Pachydiplax longipennisBothS–W3Endophytic35.5
Pantala flavescensBothS3Exophytic48.5
Perithemis teneraBothS–W4.5Exophytic22.5
Plathemis lydiaBothS–W3Exophytic45
Platycnemis pennipesLoticS2.5Endophytic36
Pyrrhosoma nymphulaLenticW1.5Endophytic34.5
Rhionaeschna californicaLenticS–W4Endophytic60.5
Rhionaeschna multicolorBothS–W2Endophytic67
Somatochlora metallicaBothW1.5Exophytic53
Somatochlora semicircularisLenticW2Exophytic49.5
Sympetrum corruptumBothS–W5Exophytic40.5
Sympetrum danaeLenticW2Exophytic31.5
Sympetrum internumLenticW4Exophytic33.5
Sympetrum pallipesBothS–W2Endophytic36
Sympetrum sanguineumLenticS3.5Exophytic36.5
Sympetrum striolatumBothW5Exophytic39.5
Sympetrum vulgatumLenticS2Exophytic37.5
Appendix 1—table 4
Credible intervals of all MCMCglmm models testing predictions regarding the range and phenology shifts across 66 odonate species in North America and Europe.

These models are detailed in Model information and statements of the Supplementary Information.

Lower credible intervalUpper credible interval
Phenological shifts ~ range shifts
(Intercept)–0.260.49
Range shifts–0.71–0.16
Continent–0.750.30
Range shifts ~ range geography + T° variability
(Intercept)–1.22–0.12
Southern range0.361.56
Widespread–0.321.08
T° variability–0.60–0.18

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Catherine Sirois-Delisle
  2. Susan CC Gordon
  3. Jeremy Kerr
(2025)
Range geography and temperature variability explain cross-continental convergence in range and phenology shifts in a model insect taxon
eLife 13:RP101208.
https://doi.org/10.7554/eLife.101208.4