Dynamic metabolic exchange governs a marine algal-bacterial interaction

  1. Einat Segev  Is a corresponding author
  2. Thomas P Wyche
  3. Ki Hyun Kim
  4. Jörn Petersen
  5. Claire Ellebrandt
  6. Hera Vlamakis
  7. Natasha Barteneva
  8. Joseph N Paulson
  9. Liraz Chai
  10. Jon Clardy
  11. Roberto Kolter  Is a corresponding author
  1. Harvard Medical School, United States
  2. Sungkyunkwan University, United States
  3. Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany
  4. Broad Institute, United States
  5. Dana-Farber Cancer Institute, United States
  6. The Hebrew University of Jerusalem, Israel

Abstract

Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Einat Segev

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    For correspondence
    Einat_Segev@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2266-1219
  2. Thomas P Wyche

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Ki Hyun Kim

    School of Pharmacy, Sungkyunkwan University, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5285-9138
  4. Jörn Petersen

    Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
    Competing interests
    No competing interests declared.
  5. Claire Ellebrandt

    Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
    Competing interests
    No competing interests declared.
  6. Hera Vlamakis

    Broad Institute, Boston, United States
    Competing interests
    No competing interests declared.
  7. Natasha Barteneva

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. Joseph N Paulson

    Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  9. Liraz Chai

    Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    No competing interests declared.
  10. Jon Clardy

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    Jon Clardy, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0213-8356
  11. Roberto Kolter

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    For correspondence
    roberto_kolter@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9548-1481

Funding

European Molecular Biology Organization (LTF 649-2012)

  • Einat Segev

Human Frontier Science Program (LT000061/2013-L)

  • Einat Segev

DFG Transregio TRR-51 Roseobacter

  • Jörn Petersen

PCMM

  • Natasha Barteneva

National Institutes of Health (RR023459)

  • Natasha Barteneva

National Institutes of Health (GM086258)

  • Jon Clardy

National Institutes of Health (GM58213)

  • Roberto Kolter

National Institutes of Health (GM82137)

  • Roberto Kolter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Segev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,557
    views
  • 1,610
    downloads
  • 200
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Einat Segev
  2. Thomas P Wyche
  3. Ki Hyun Kim
  4. Jörn Petersen
  5. Claire Ellebrandt
  6. Hera Vlamakis
  7. Natasha Barteneva
  8. Joseph N Paulson
  9. Liraz Chai
  10. Jon Clardy
  11. Roberto Kolter
(2016)
Dynamic metabolic exchange governs a marine algal-bacterial interaction
eLife 5:e17473.
https://doi.org/10.7554/eLife.17473

Share this article

https://doi.org/10.7554/eLife.17473

Further reading

    1. Ecology
    Mathilde Delacoux, Fumihiro Kano
    Research Article

    During collective vigilance, it is commonly assumed that individual animals compromise their feeding time to be vigilant against predators, benefiting the entire group. One notable issue with this assumption concerns the unclear nature of predator ‘detection’, particularly in terms of vision. It remains uncertain how a vigilant individual utilizes its high-acuity vision (such as the fovea) to detect a predator cue and subsequently guide individual and collective escape responses. Using fine-scale motion-capture technologies, we tracked the head and body orientations of pigeons (hence reconstructed their visual fields and foveal projections) foraging in a flock during simulated predator attacks. Pigeons used their fovea to inspect predator cues. Earlier foveation on a predator cue was linked to preceding behaviors related to vigilance and feeding, such as head-up or down positions, head-scanning, and food-pecking. Moreover, earlier foveation predicted earlier evasion flights at both the individual and collective levels. However, we also found that relatively long delay between their foveation and escape responses in individuals obscured the relationship between these two responses. While our results largely support the existing assumptions about vigilance, they also underscore the importance of considering vision and addressing the disparity between detection and escape responses in future research.

    1. Ecology
    Elham Nourani, Louise Faure ... Kamran Safi
    Research Article

    The heterogeneity of the physical environment determines the cost of transport for animals, shaping their energy landscape. Animals respond to this energy landscape by adjusting their distribution and movement to maximize gains and reduce costs. Much of our knowledge about energy landscape dynamics focuses on factors external to the animal, particularly the spatio-temporal variations of the environment. However, an animal’s internal state can significantly impact its ability to perceive and utilize available energy, creating a distinction between the ‘fundamental’ and the ‘realized’ energy landscapes. Here, we show that the realized energy landscape varies along the ontogenetic axis. Locomotor and cognitive capabilities of individuals change over time, especially during the early life stages. We investigate the development of the realized energy landscape in the Central European Alpine population of the golden eagle Aquila chrysaetos, a large predator that requires negotiating the atmospheric environment to achieve energy-efficient soaring flight. We quantified weekly energy landscapes using environmental features for 55 juvenile golden eagles, demonstrating that energetic costs of traversing the landscape decreased with age. Consequently, the potentially flyable area within the Alpine region increased 2170-fold during their first three years of independence. Our work contributes to a predictive understanding of animal movement by presenting ontogeny as a mechanism shaping the realized energy landscape.