Dynamic metabolic exchange governs a marine algal-bacterial interaction

  1. Einat Segev  Is a corresponding author
  2. Thomas P Wyche
  3. Ki Hyun Kim
  4. Jörn Petersen
  5. Claire Ellebrandt
  6. Hera Vlamakis
  7. Natasha Barteneva
  8. Joseph N Paulson
  9. Liraz Chai
  10. Jon Clardy
  11. Roberto Kolter  Is a corresponding author
  1. Harvard Medical School, United States
  2. Sungkyunkwan University, United States
  3. Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany
  4. Broad Institute, United States
  5. Dana-Farber Cancer Institute, United States
  6. The Hebrew University of Jerusalem, Israel

Abstract

Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Einat Segev

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    For correspondence
    Einat_Segev@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2266-1219
  2. Thomas P Wyche

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Ki Hyun Kim

    School of Pharmacy, Sungkyunkwan University, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5285-9138
  4. Jörn Petersen

    Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
    Competing interests
    No competing interests declared.
  5. Claire Ellebrandt

    Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
    Competing interests
    No competing interests declared.
  6. Hera Vlamakis

    Broad Institute, Boston, United States
    Competing interests
    No competing interests declared.
  7. Natasha Barteneva

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. Joseph N Paulson

    Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  9. Liraz Chai

    Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    No competing interests declared.
  10. Jon Clardy

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    Jon Clardy, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0213-8356
  11. Roberto Kolter

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    For correspondence
    roberto_kolter@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9548-1481

Funding

European Molecular Biology Organization (LTF 649-2012)

  • Einat Segev

Human Frontier Science Program (LT000061/2013-L)

  • Einat Segev

DFG Transregio TRR-51 Roseobacter

  • Jörn Petersen

PCMM

  • Natasha Barteneva

National Institutes of Health (RR023459)

  • Natasha Barteneva

National Institutes of Health (GM086258)

  • Jon Clardy

National Institutes of Health (GM58213)

  • Roberto Kolter

National Institutes of Health (GM82137)

  • Roberto Kolter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Segev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,908
    views
  • 1,699
    downloads
  • 212
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Einat Segev
  2. Thomas P Wyche
  3. Ki Hyun Kim
  4. Jörn Petersen
  5. Claire Ellebrandt
  6. Hera Vlamakis
  7. Natasha Barteneva
  8. Joseph N Paulson
  9. Liraz Chai
  10. Jon Clardy
  11. Roberto Kolter
(2016)
Dynamic metabolic exchange governs a marine algal-bacterial interaction
eLife 5:e17473.
https://doi.org/10.7554/eLife.17473

Share this article

https://doi.org/10.7554/eLife.17473

Further reading

    1. Ecology
    Ming-Qiang Wang, Shi-Kun Guo ... Chao-Dong Zhu
    Research Article

    Environmental factors can influence ecological networks, but these effects are poorly understood in the realm of the phylogeny of host-parasitoid interactions. Especially, we lack a comprehensive understanding of the ways that biotic factors, including plant species richness, overall community phylogenetic and functional composition of consumers, and abiotic factors such as microclimate, determine host-parasitoid network structure and host-parasitoid community dynamics. To address this, we leveraged a 5-year dataset of trap-nesting bees and wasps and their parasitoids collected in a highly controlled, large-scale subtropical tree biodiversity experiment. We tested for effects of tree species richness, tree phylogenetic, and functional diversity, and species and phylogenetic composition on species and phylogenetic diversity of both host and parasitoid communities and the composition of their interaction networks. We show that multiple components of tree diversity and canopy cover impacted both, species and phylogenetic composition of hosts and parasitoids. Generally, phylogenetic associations between hosts and parasitoids reflected nonrandomly structured interactions between phylogenetic trees of hosts and parasitoids. Further, host-parasitoid network structure was influenced by tree species richness, tree phylogenetic diversity, and canopy cover. Our study indicates that the composition of higher trophic levels and corresponding interaction networks are determined by plant diversity and canopy cover, especially via trophic links in species-rich ecosystems.

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.