Dynamic metabolic exchange governs a marine algal-bacterial interaction

  1. Einat Segev  Is a corresponding author
  2. Thomas P Wyche
  3. Ki Hyun Kim
  4. Jörn Petersen
  5. Claire Ellebrandt
  6. Hera Vlamakis
  7. Natasha Barteneva
  8. Joseph N Paulson
  9. Liraz Chai
  10. Jon Clardy
  11. Roberto Kolter  Is a corresponding author
  1. Harvard Medical School, United States
  2. Sungkyunkwan University, United States
  3. Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany
  4. Broad Institute, United States
  5. Dana-Farber Cancer Institute, United States
  6. The Hebrew University of Jerusalem, Israel

Abstract

Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Einat Segev

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    For correspondence
    Einat_Segev@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2266-1219
  2. Thomas P Wyche

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Ki Hyun Kim

    School of Pharmacy, Sungkyunkwan University, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5285-9138
  4. Jörn Petersen

    Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
    Competing interests
    No competing interests declared.
  5. Claire Ellebrandt

    Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
    Competing interests
    No competing interests declared.
  6. Hera Vlamakis

    Broad Institute, Boston, United States
    Competing interests
    No competing interests declared.
  7. Natasha Barteneva

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. Joseph N Paulson

    Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  9. Liraz Chai

    Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    No competing interests declared.
  10. Jon Clardy

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    Jon Clardy, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0213-8356
  11. Roberto Kolter

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    For correspondence
    roberto_kolter@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9548-1481

Funding

European Molecular Biology Organization (LTF 649-2012)

  • Einat Segev

Human Frontier Science Program (LT000061/2013-L)

  • Einat Segev

DFG Transregio TRR-51 Roseobacter

  • Jörn Petersen

PCMM

  • Natasha Barteneva

National Institutes of Health (RR023459)

  • Natasha Barteneva

National Institutes of Health (GM086258)

  • Jon Clardy

National Institutes of Health (GM58213)

  • Roberto Kolter

National Institutes of Health (GM82137)

  • Roberto Kolter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul G Falkowski, Rutgers University, United States

Version history

  1. Received: May 6, 2016
  2. Accepted: November 16, 2016
  3. Accepted Manuscript published: November 18, 2016 (version 1)
  4. Version of Record published: December 9, 2016 (version 2)

Copyright

© 2016, Segev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,320
    views
  • 1,567
    downloads
  • 185
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Einat Segev
  2. Thomas P Wyche
  3. Ki Hyun Kim
  4. Jörn Petersen
  5. Claire Ellebrandt
  6. Hera Vlamakis
  7. Natasha Barteneva
  8. Joseph N Paulson
  9. Liraz Chai
  10. Jon Clardy
  11. Roberto Kolter
(2016)
Dynamic metabolic exchange governs a marine algal-bacterial interaction
eLife 5:e17473.
https://doi.org/10.7554/eLife.17473

Share this article

https://doi.org/10.7554/eLife.17473

Further reading

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.

    1. Ecology
    Ari Grele, Tara J Massad ... Lora A Richards
    Research Article

    Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.