Sexual selection gradients change over time in a simultaneous hermaphrodite

  1. Jeroen NA Hoffer
  2. Janine Mariën
  3. Jacintha Ellers
  4. Joris M Koene  Is a corresponding author
  1. Vrije Universiteit Amsterdam, Netherlands

Abstract

Sexual selection is generally predicted to act more strongly on males than on females. The Darwin-Bateman paradigm predicts that this should also hold for hermaphrodites. However, measuring this strength of selection is less straightforward when both sexual functions are performed throughout the organism's lifetime. Besides, quantifications of sexual selection are usually done during a short time window, while many animals store sperm and are long-lived. To explore whether the chosen timeframe affects estimated measures of sexual selection, we recorded mating success and reproductive success over time, using a simultaneous hermaphrodite. Our results show that male sexual selection gradients are consistently positive. However, an individual's female mating success seems to negatively affect its own male reproductive success, an effect that only becomes visible several weeks into the experiment, highlighting that the timeframe is crucial for the quantification and interpretation of sexual selection measures, an insight that applies to any iteroparous mating system.

Article and author information

Author details

  1. Jeroen NA Hoffer

    Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Janine Mariën

    Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacintha Ellers

    Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Joris M Koene

    Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    joris.koene@vu.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8188-3439

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (816.01.009)

  • Joris M Koene

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Lentink, Stanford University, United States

Version history

  1. Received: January 14, 2017
  2. Accepted: June 13, 2017
  3. Accepted Manuscript published: June 14, 2017 (version 1)
  4. Version of Record published: July 14, 2017 (version 2)

Copyright

© 2017, Hoffer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,520
    Page views
  • 269
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeroen NA Hoffer
  2. Janine Mariën
  3. Jacintha Ellers
  4. Joris M Koene
(2017)
Sexual selection gradients change over time in a simultaneous hermaphrodite
eLife 6:e25139.
https://doi.org/10.7554/eLife.25139

Share this article

https://doi.org/10.7554/eLife.25139

Further reading

    1. Ecology
    Yongzhi Yan, Scott Jarvie, Qing Zhang
    Research Article

    Habitat loss and fragmentation per se have been shown to be a major threat to global biodiversity and ecosystem function. However, little is known about how habitat loss and fragmentation per se alters the relationship between biodiversity and ecosystem function (BEF relationship) in the natural landscape context. Based on 130 landscapes identified by a stratified random sampling in the agro-pastoral ecotone of northern China, we investigated the effects of landscape context (habitat loss and fragmentation per se) on plant richness, above-ground biomass, and the relationship between them in grassland communities using a structural equation model. We found that habitat loss directly decreased plant richness and hence decreased above-ground biomass, while fragmentation per se directly increased plant richness and hence increased above-ground biomass. Fragmentation per se also directly decreased soil water content and hence decreased above-ground biomass. Meanwhile, habitat loss decreased the magnitude of the positive relationship between plant richness and above-ground biomass by reducing the percentage of grassland specialists in the community, while fragmentation per se had no significant modulating effect on this relationship. These results demonstrate that habitat loss and fragmentation per se have inconsistent effects on BEF, with the BEF relationship being modulated by landscape context. Our findings emphasise that habitat loss rather than fragmentation per se can weaken the positive BEF relationship by decreasing the degree of habitat specialisation of the community.

    1. Ecology
    Anna L Erdei, Aneth B David ... Teun Dekker
    Research Article

    Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push-pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop's constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatiles were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Further, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize-Desmodium push-pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.