Sexual selection gradients change over time in a simultaneous hermaphrodite

  1. Jeroen NA Hoffer
  2. Janine Mariën
  3. Jacintha Ellers
  4. Joris M Koene  Is a corresponding author
  1. Vrije Universiteit Amsterdam, Netherlands

Abstract

Sexual selection is generally predicted to act more strongly on males than on females. The Darwin-Bateman paradigm predicts that this should also hold for hermaphrodites. However, measuring this strength of selection is less straightforward when both sexual functions are performed throughout the organism's lifetime. Besides, quantifications of sexual selection are usually done during a short time window, while many animals store sperm and are long-lived. To explore whether the chosen timeframe affects estimated measures of sexual selection, we recorded mating success and reproductive success over time, using a simultaneous hermaphrodite. Our results show that male sexual selection gradients are consistently positive. However, an individual's female mating success seems to negatively affect its own male reproductive success, an effect that only becomes visible several weeks into the experiment, highlighting that the timeframe is crucial for the quantification and interpretation of sexual selection measures, an insight that applies to any iteroparous mating system.

Article and author information

Author details

  1. Jeroen NA Hoffer

    Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Janine Mariën

    Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacintha Ellers

    Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Joris M Koene

    Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    joris.koene@vu.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8188-3439

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (816.01.009)

  • Joris M Koene

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Hoffer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,600
    views
  • 271
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeroen NA Hoffer
  2. Janine Mariën
  3. Jacintha Ellers
  4. Joris M Koene
(2017)
Sexual selection gradients change over time in a simultaneous hermaphrodite
eLife 6:e25139.
https://doi.org/10.7554/eLife.25139

Share this article

https://doi.org/10.7554/eLife.25139

Further reading

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.

    1. Ecology
    Laura Fargeot, Camille Poesy ... Blanchet Simon
    Research Article

    Understanding the relationships between biodiversity and ecosystem functioning stands as a cornerstone in ecological research. Extensive evidence now underscores the profound impact of species loss on the stability and dynamics of ecosystem functions. However, it remains unclear whether the loss of genetic diversity within key species yields similar consequences. Here, we delve into the intricate relationship between species diversity, genetic diversity, and ecosystem functions across three trophic levels – primary producers, primary consumers, and secondary consumers – in natural aquatic ecosystems. Our investigation involves estimating species diversity and genome-wide diversity – gauged within three pivotal species – within each trophic level, evaluating seven key ecosystem functions, and analyzing the magnitude of the relationships between biodiversity and ecosystem functions (BEFs). We found that, overall, the absolute effect size of genetic diversity on ecosystem functions mirrors that of species diversity in natural ecosystems. We nonetheless unveil a striking dichotomy: while genetic diversity was positively correlated with various ecosystem functions, species diversity displays a negative correlation with these functions. These intriguing antagonist effects of species and genetic diversity persist across the three trophic levels (underscoring its systemic nature), but were apparent only when BEFs were assessed within trophic levels rather than across them. This study reveals the complexity of predicting the consequences of genetic and species diversity loss under natural conditions, and emphasizes the need for further mechanistic models integrating these two facets of biodiversity.